Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Oxidative inactivation of brain alkaline phosphatase responsible for hydrolysis of phosphocholine.

Alkaline phosphatase, one of the enzymes responsible for the conversion of phosphocholine into choline, was purified from bovine brain membrane, where the phosphatase is bound as glycosylphosphatidylinositol-linked protein, and subjected to oxidative inactivation. The phosphatase activity, based on the hydrolysis of p-nitrophenyl phosphate and phosphocholine, decreased slightly after the exposure to H2O2. Inclusion of Cu2+ in the incubation with 1 mM H2O2 led to a rapid decrease of activity in a time- and concentration-dependent manner. In comparison, the H2O2/Cu2+ system was much more effective than the H2O2/Fe2+ system in inactivating brain phosphatase. In a further study, it was observed that the hydroxy radical scavengers mannitol, ethanol, or benzoate failed to prevent against H2O2/Cu2+-induced inactivation of the phosphatase, excluding the involvement of extraneous hydroxy radicals in metal-catalyzed oxidation. In addition, it was found that both substrates, p-nitrophenyl phosphate and phosphocholine, and an inhibitor, phosphate ion, at their saturating concentrations exhibited a remarkable, although incomplete, protection against the inactivating action of H2O2/Cu2+. A similar protection was also expressed by divalent metal ions such as Mg2+ or Mn2+. Separately, it was found that H2O2/Fe2+-induced inactivation was prevented by p-nitrophenyl phosphate or Mg2+ but not phosphate ions. Thus, it is implied that phosphocholine-hydrolyzing alkaline phosphatase in brain membrane might be one of enzymes susceptible to metal-catalyzed oxidation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app