Add like
Add dislike
Add to saved papers

Elucidation of molecular mechanism of the unfolded protein response.

The endoplasmic reticulum (ER), where newly synthesized secretory and transmembrane proteins are folded and assembled, has the ability to discriminate folded proteins from unfolded proteins and controls the quality of synthesized proteins. Only correctly folded molecules are allowed to move along the secretory pathway, whereas unfolded proteins are retained in the ER.The ER contains a number of molecular chaperones and folding enzymes (ER chaperones hereafter), which assist productive folding of proteins, and therefore newly synthesized proteins usually gain correct tertiary and quaternary structures quite efficiently. Yet unfolded or misfolded proteins even after assistance of ER chaperones are retrotranslocated back to the cytosol, ubiquitinated and degraded by the proteasome. This disposal system is called ER-associated degradation (ERAD). Thus, the quality of proteins in the ER is ensured by two distinct mechanisms, productive folding and ERAD, which have opposite directions.Under a variety of conditions collectively termed ER stress, however, unfolded or misfolded proteins accumulate in the ER, which in turn activates ER stress response or Unfolded Protein Response (UPR). The UPR is mediated by transmembrane proteins in the ER, and three ER stress sensors/transducers, namely IRE1, PERK and ATF6, operates ubiquitously in mammals. Thanks to these signaling pathways, translation is generally attenuated to decrease the burden on the folding machinery; transcription of ER chaperones is induced to augment folding capacity; and transcription of components of ERAD machinery is induced to enhance degradation capacity, leading to maintenance of the homeostasis of the ER. If ER stress sustains, cells undergo to apoptosis.I will talk on the mechanism, evolution, and physiological importance of the UPR and ERAD as well as its involvement in development and progression of various diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app