Add like
Add dislike
Add to saved papers

Transcriptomic insights into vibrio-induced mortality in the clam Meretrix petechialis under high temperature.

In this study, we investigate the mortality of the clam Meretrix petechialis facing a vibrio challenge under different temperatures and the underlying molecular mechanisms. Our experiment distinctly revealed that clam mortality was predominantly observed under high temperature, highlighting the critical impact of thermal stress on clam susceptibility to infection. Using RNA-seq, we further compared the global transcriptional response to vibrio in clam gills between high and low temperatures. Compared to other groups, the differentially expressed genes in vibrio-challenged group at high temperature associated with immunity, oxidative stress, and membrane transport. Key results show a weakened immune response in clams at high temperature, especially in the TNF signaling pathway, and a decrease in membrane transport efficiency, notably in SLC proteins. Additionally, high temperature enhanced pro-inflammatory related unsaturated fatty acid metabolism, leading to increased oxidative damage. This was further evidenced by our biochemical assays, which showed significantly higher levels of lipid peroxidation and protein carbonylation in clams at high temperature, indicating heightened oxidative damage. RT-PCR validation of selected DEGs corroborated the RNA-seq findings. Our findings contribute to the understanding of more frequent shellfish mortality in summer, emphasizing the role of temperature in pathogen response, elucidating the molecular mechanisms underlying the synergistic effect of pathogen and high temperature stresses. The key genes identified provide potential targets for resistance-assisted breeding. This research has significant implications for bivalve aquaculture and their physiology, particularly in light of global climate changes affecting marine ecosystems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app