Add like
Add dislike
Add to saved papers

Development and external validation of a dynamic risk score for early prediction of cardiogenic shock in cardiac intensive care units using machine learning.

BACKGROUND: Myocardial infarction and heart failure are major cardiovascular diseases that affect millions of people in the US with the morbidity and mortality being highest among patients who develop cardiogenic shock. Early recognition of cardiogenic shock allows prompt implementation of treatment measures. Our objective is to develop a new dynamic risk score, called CShock, to improve early detection of cardiogenic shock in cardiac intensive care unit (ICU).

METHODS: We developed and externally validated a deep learning-based risk stratification tool, called CShock, for patients admitted into the cardiac ICU with acute decompensated heart failure and/or myocardial infarction to predict onset of cardiogenic shock. We prepared a cardiac ICU dataset using MIMIC-III database by annotating with physician adjudicated outcomes. This dataset that consisted of 1500 patients with 204 having cardiogenic/mixed shock was then used to train CShock. The features used to train the model for CShock included patient demographics, cardiac ICU admission diagnoses, routinely measured laboratory values and vital signs, and relevant features manually extracted from echocardiogram and left heart catheterization reports. We externally validated the risk model on the New York University (NYU) Langone Health cardiac ICU database that was also annotated with physician adjudicated outcomes. The external validation cohort consisted of 131 patients with 25 patients experiencing cardiogenic/mixed shock.

RESULTS: CShock achieved an area under the receiver operator characteristic curve (AUROC) of 0.821 (95% CI 0.792-0.850). CShock was externally validated in the more contemporary NYU cohort and achieved an AUROC of 0.800 (95% CI 0.717-0.884), demonstrating its generalizability in other cardiac ICUs. Having an elevated heart rate is most predictive of cardiogenic shock development based on Shapley values. The other top ten predictors are having an admission diagnosis of myocardial infarction with ST-segment elevation, having an admission diagnosis of acute decompensated heart failure, Braden Scale, Glasgow Coma Scale, Blood urea nitrogen, Systolic blood pressure, Serum chloride, Serum sodium, and Arterial blood pH.

CONCLUSIONS: The novel CShock score has the potential to provide automated detection and early warning for cardiogenic shock and improve the outcomes for the millions of patients who suffer from myocardial infarction and heart failure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app