Add like
Add dislike
Add to saved papers

Norflurazon causes cell death and inhibits implantation-related genes in porcine trophectoderm and uterine luminal epithelial cells.

Norflurazon, an inhibitor of carotenoid synthesis, is a pre-emergent herbicide that prevents growth of weeds. The norflurazon is known to hamper embryo development in non-mammals. However, specific toxic effects of norflurazon on mammalian maternal and fetal cells have not been elucidated. Thus, the hypothesis of this study is that norflurazon may influence the toxic effects between maternal and fetal cells during early pregnancy in pigs. We aimed to examine the toxic effects of norflurazon in porcine trophectoderm (Tr) and uterine luminal epithelium (LE) cells. Norflurazon, administered at 0, 20, 50 or 100 μM for 48 h was used to determine its effects on cell proliferation and cell-cycle arrest. For both uterine LE and Tr cell lines, norflurazone caused mitochondrial dysfunction by inhibiting mitochondrial respiration and ATP production, and down-regulated expression of mRNAs of mitochondrial complex genes. Norflurazon increased cell death by increasing intracellular calcium and regulating PI3K and MAPK cell signaling pathways, as well as endoplasmic reticulum (ER) stress, ER-mitochondrial contact, and autophagy-related target proteins. Norflurazone also inhibited expression of genes required for implantation of blastocysts, including SMAD2, SMAD4, and SPP1. These findings indicate that norflurazon may induce implantation failure in pigs and other mammals through adverse effects on both Tr and uterine LE cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app