Add like
Add dislike
Add to saved papers

Ventral tegmental area dopaminergic circuits participates in stress-induced chronic postsurgical pain in male mice.

BMC Neuroscience 2024 January 10
BACKGROUND: Chronic postsurgical pain (CPP) markedly impairs patients' quality of life. Research has shown that chronic stress may extend incisional nociception in male mice. Dopaminergic (DAergic) neurons in the ventral tegmental area (VTA) are integral to stress-related mental disorders (including major depressive disorder, anxiety disorders, and PTSD) and pain. However, the impact of chronic social defeat stress (CSDS) on mesolimbic dopamine (DA) transmission in the development of CPP is yet to be established. It remains uncertain whether the dopamine signals in the rostral anterior cingulate cortex (rACC), which regulate pain, derive from the VTA. This study aims to explore the role of VTA-rACC dopaminergic circuits in a mouse model of CPP induced by CSDS.

METHODS: We conducted CSDS on C57BL/6 J wild-type male mice (n = 12-16 mice/group) and DAT-cre male mice (n = 10-12 mice/group). After 10 days of CSDS, a left posterior plantar incision was made to establish a mouse model of CPP. Paw withdrawal thresholds (PWTs) were evaluated using Von-Frey fibre stimulation. The open field test (OFT) and elevated plus maze test (EPM) were used to assess pain-related negative emotions. We used immunofluorescence staining and Western Blot to analyse D1, D2, c-Fos, and TH expression. DAergic fibre projections in the VTA-rACC neural pathway were traced using retrograde tracing and immunofluorescence staining. Optogenetics and Chemogenetics were employed to manipulate DAergic neurons in the VTA and their axons in the rACC.

RESULTS: The ipsilateral PWTs in male C57BL/6 J mice significantly decreased after surgery, returning to baseline after seven days. Conversely, in CSDS mice, ipsilateral PWTs remained reduced for at least 30 days post-incision. A significant reduction in TH-positive neurons expressing c-Fos in the VTA of CPP mice was observed 15 days post-incision. Activating DAergic neurons significantly improved ipsilateral PWTs and locomotor performance in the OFT and EPM in CPP mice post-incision. Additionally, D1 expression in the rACC was found to decrease in CPP mice, and this reduction counteracted the increase in PWTs caused by activating DAergic neuron axon terminals in the rACC.

CONCLUSION: CSDS results in chronicity of postsurgical nociception and anxiety-like negative emotions, with alterations in DA transmission playing a role in CPP. Specific activation of DAergic neurons mitigates nociceptive responses and anxiety-like bahaviors, possibly mediated by D1 receptors in the rACC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app