Add like
Add dislike
Add to saved papers

An engineered lymph node comprising porous collagen scaffold with hybridized biological signals embedded in B cell membrane coatings.

Biomaterials 2023 November 31
Complications can arise from damaging or removing lymph nodes after surgeries for malignant tumours. Our team has developed an innovative solution to recreate lymph nodes via an engineering approach. Using a Type II collagen scaffold coated with B cell membranes for the sake of attracting T cells in different regions, we could mimic the thymus-dependent and thymus-independent areas in vitro. This engineering strategy based on biophysical mimicry has a great potential for clinical applications. By further conjugating biological signals, anti-CD3/28, onto the scaffold coated with the B cell membrane, we achieved an 11.6-fold expansion of T cells within 14 days of in vitro culture while ensuring their activity, phenotype homeostasis, and differentiation capacity kept intact. Artificial lymph nodes had excellent biocompatibility and caused no pathological or physiological adverse effects after implantation into C57BL6 mice. In vivo assays also demonstrated that this artificial lymph node system positively adhered to omental tissues, creating an environment that fostered T cell growth and prevented cellular failure and death. Additionally, it induced vascular and lymphatic vessel invasion, which was beneficial to the migration and circulation of T cells between this system and peripheral blood. Due to the porous collagen fibre structure, it also facilitated the infiltration of host immune cells. This work opens new avenues to immune organ regeneration via a tissue engineering approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app