Add like
Add dislike
Add to saved papers

The Effect of MDSC-Derived Exosomes Played in Esophageal Squamous Carcinoma Cells after Ionizing Radiation.

PURPOSE/OBJECTIVE(S): Radiotherapy is the main treatment for esophageal cancer. Previous studies have shown that radiotherapy not only kills tumor cells directly, but also reshapes the immune microenvironment of the tumor. It has been reported an increase in the recruitment of myeloid-derived suppressor cells (MDSC) can occur in tumor tissue after ionizing radiation. Exosomes are mediators of intercellular information exchange and are also involved in the regulation of the tumor microenvironment. In this study, we wanted to understand whether MDSC in esophageal cancer tissue are involved in the regulation of tumor cell response to ionizing radiation via exosomes.

MATERIALS/METHODS: KYSE-150 was used to construct a subcutaneous transplantation tumor model in nude mice. And then mice irradiated with 5 Gy×5fx and 0 Gy×5fx respectively. After irradiation, the spleens of the mice were used to isolate MDSC, and collect the cell supernatants to extract the exosomes. Based on the exosomes, we divided the experiment into three groups (control, exosomes, exosomes+radiation). Exosomes were injected into a nude mouse model of esophageal cancer via the tail vein or co-cultured with KYSE-150 cells. Mice were irradiated with a 5 Gy×5fx after completion of injection, and KYSE-150 cells were irradiated with a single dose 4 Gy. After radiation, KYSE-150 cells were used to detect cell cloning, apoptosis and cell cycle by flow cytometry, cell proliferation by CCK 8. XRCC4,XRCC5,XRCC6,γH2AX,ATM expression in cells and tumor tissue were measured by Western blot and RT-PCR.

RESULTS: The tumor volume was significantly reduced after 5 Gy x 5fx radiation. When exosomes co-cultured with KYSE-150 cells, decrease in apoptosis and increase in cell cloning and cell proliferation were found in the exosomes+radiation group and exosomes group after radiation when compared with the control group, with this change being more pronounced in the exosome+radiation group. The results of the cell cycle assay showed that after ionizing radiation, the proportion of cells in the G0/G1 phase was significantly lower, and the proportion of cells in the S and G2/M phases were significantly higher in the exosomes+radiation group and exosomes group when compared to the Control group. The protein and mRNA expression of XRCC4,XRCC5,XRCC6,γH2AX,ATM in cells were increased in exosomes+radiation group and exosomes group after radiation when compared with the control group, with this change being more obvious in the exosome+radiation group. After irradiation, tumor volumes were measured in nude mice and the results showed that exosomes+radiation group tumors were the largest in volume, while the control group regressed most significantly after irradiation.

CONCLUSION: MDSC-derived exosomes have a tumor growth-promoting effect in esophageal squamous carcinoma, which is enhanced by ionizing radiation, and this may be related to the accelerated repair of damage in tumor tissue after radiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app