Add like
Add dislike
Add to saved papers

Enhanced Photothermal Activity of Nanoconjugated System via Covalent Organic Frameworks as the Springboard.

Small 2023 August 31
The development of nanomaterials with high photothermal conversion efficiency has been a hot issue. In this work, a novel photothermal nanomaterial is synthesized using Prussian blue nanocubes (PBNCs) as the photothermal active substance and covalent organic framework (COF) as the substrate. The as-prepared COF@PBNCs show a high photothermal conversion efficiency of 59.1%, significantly higher than that of pure PBNCs (32.5%). A new circuit path is generated with the combination of COF, which prevents the direct combination of thermal electrons and holes, as well as enhances the nonradiation transition of PBNCs. Besides, the imine groups on COF as the coordination and reduction agent allow the in situ growth of PBNCs, and the dense micropores of COF as the ideal heat conduction channels can also be the potential factors for the enhanced photothermal property. The photothermal property of COF@PBNCs is further used in the construction of immunosensor for the detection of furosemide (FUR). With the help of handheld thermal imager, the concentration of FUR can be easily read, thus shedding a new light in the construction of visual sensor for simple and low-cost point-of-care testing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app