Read by QxMD icon Read


Yong Ju Park, Ajit K Katiyar, Anh Tuan Hoang, Jong-Hyun Ahn
To realize basic electronic units such as complementary metal-oxide-semiconductor (CMOS) inverters and other logic circuits, the selective and controllable fabrication of p- and n-type transistors with a low Schottky barrier height is highly desirable. Herein, an efficient and nondestructive technique of electron-charge transfer doping by depositing a thin Al2 O3 layer on chemical vapor deposition (CVD)-grown 2H-MoTe2 is utilized to tune the doping from p- to n-type. Moreover, a type-controllable MoTe2 transistor with a low Schottky barrier height is prepared...
May 17, 2019: Small
Anaïs Ferris, David Bourrier, Sébastien Garbarino, Daniel Guay, David Pech
Due to their high-power density and long lifetime, microsupercapacitors have been considered as an efficient energy supply/storage solution for the operation of small electronic devices. However, their fabrication remains confined to 2D thin-film microdevices with limited areal energy. In this study, the integration of all-solid-state 3D interdigitated microsupercapacitors on 4 in. silicon wafers with record energy density is demonstrated. The device electrodes are composed of a pseudocapacitive hydrated ruthenium dioxide RuO2 deposited onto highly porous current collectors...
May 16, 2019: Small
Da Zhang, Cuilin Zhang, Shanyou Lan, Yanbing Huang, Jingfeng Liu, Juan Li, Xiaolong Liu, Huanghao Yang
Current antithrombotic therapeutic strategies often suffer from severe post-thrombotic syndromes (PTS), inconvenient daily subcutaneous injections for a long time and short circulation times accompanied by a dose-dependent risk of intracranial hemorrhage. Aiming at noninvasive, on-demand, and sustained antithrombotic therapy, a new thrombolysis approach based on the transgene system has been developed to remotely and precisely control the expression of urokinase plasminogen activator (uPA) by bioengineered cells for antithrombotic therapy both in vitro and in vivo...
May 15, 2019: Small
Bin Liu, Hui-Qing Peng, Junye Cheng, Kui Zhang, Da Chen, Dong Shen, Shuilin Wu, Tianpeng Jiao, Xin Kong, Qili Gao, Shuyu Bu, Chun-Sing Lee, Wenjun Zhang
Development of high-performance and low-cost nonprecious metal electrocatalysts is critical for eco-friendly hydrogen production through electrolysis. Herein, a novel nanoflower-like electrocatalyst comprising few-layer nitrogen-doped graphene-encapsulated nickel-copper alloy directly on a porous nitrogen-doped graphic carbon framework (denoted as Nix Cuy @ NG-NC) is successfully synthesized using a facile and scalable method through calcinating the carbon, copper, and nickel hydroxy carbonate composite under inert atmosphere...
May 14, 2019: Small
Wenhan Xu, Jie Liu, Tianwu Chen, Xiangyu Jiang, Xiaoshi Qian, Yu Zhang, Zhenhua Jiang, Yunhe Zhang
Polymer dielectrics are ubiquitous in advanced electric energy storage systems. However, the relatively low operating temperature significantly menaces their widespread application at high temperatures, such as for hybrid vehicles and aerospace power electronics. Spider silk, a natural nanocomposite comprised of biopolymer chains and crystal protein nanosheets combined by multiple interfacial interactions, exhibits excellent mechanical properties even at elevated temperatures. Inspired by the hierarchical nanostructure of spider silk, poly(aryl ether sulfone) is anchored to the surface of wide bandgap artificial nanosheets to prepare the nanocomposites with nanoconfinement effect...
May 14, 2019: Small
Xuming Zou, Yuanzhe Li, Guanqi Tang, Peng You, Feng Yan
Phototransistors are recognized as highly sensitive photodetectors owing to their high gain induced by a photogating effect. However, the response speed of a typical phototransistor is rather slow due to the long lifetime of trapped carriers in the channel. Here, a novel Schottky barrier-controlled phototransistor that shows ultrahigh sensitivity as well as a fast response speed is reported. The device is based on a channel of few-layer black phosphorous modified with a MAPbI3- x Clx perovskite layer, whose channel current is limited by the Schottky barrier at the source electrode...
May 14, 2019: Small
Alireza Arandian, Zeinab Bagheri, Hamide Ehtesabi, Shima Najafi Nobar, Neda Aminoroaya, Ashkan Samimi, Hamid Latifi
Miniaturized laboratories on chip platforms play an important role in handling life sciences studies. The platforms may contain static or dynamic biological cells. Examples are a fixed medium of an organ-on-a-chip and individual cells moving in a microfluidic channel, respectively. Due to feasibility of control or investigation and ethical implications of live targets, both static and dynamic cell-on-chip platforms promise various applications in biology. To extract necessary information from the experiments, the demand for direct monitoring is rapidly increasing...
May 14, 2019: Small
Guangzhi Li, Qifang Lei, Fei Wang, Dashi Deng, Shupeng Wang, Longlong Tian, Wanwan Shen, Yiyun Cheng, Zhuang Liu, Song Wu
Surgical intervention combined with intravesical instillation of chemotherapeutics to clear residual cancer cells after operation is the current standard treatment method for bladder cancer. However, the poor bioavailability of active pharmaceutical ingredients for bladder cancer cells on account of the biological barriers of bladder mucosa, together with significant side effects of currently used intravesical medicine, have limited the clinical outcomes of localized adjuvant therapy for bladder cancer. Aiming at improved intravesical instillation therapy of bladder cancer, a fluorinated polyethylenimine (F-PEI) is employed here for the transmucosal delivery of an active venom peptide, polybia-mastoparan I (MPI), which shows selective antiproliferative effect against various bladder cancer cell lines...
May 10, 2019: Small
Nitya Sai Reddy Satyavolu, Kang Yong Loh, Li Huey Tan, Yi Lu
The discovery and elucidation of genetic codes has profoundly changed not only biology but also many fields of science and engineering. The fundamental building blocks of life comprises of four simple deoxyribonucleotides and yet their combinations serve as the carrier of genetic information that encodes for proteins that can carry out many biological functions due to their unique functionalities. Inspired by nature, the functionalities of DNA molecules have been used as a capping ligand for controlling morphology of nanomaterials, and such a control is sequence dependent, which translates into distinct physical and chemical properties of resulting nanoparticles...
May 10, 2019: Small
Doudou Zhao, Wei Chang, Chenbao Lu, Chongqing Yang, Kaiyue Jiang, Xing Chang, Hualin Lin, Fan Zhang, Sheng Han, Zhongsheng Hou, Xiaodong Zhuang
The rapid development of lightweight and wearable devices requires electronic circuits possessing compact, high-efficiency, and long lifetime in very limited space. Alternating current (AC) line filters are usually tools for manipulating the surplus AC ripples for the operation of most common electronic devices. So far, only aluminum electrolytic capacitors (AECs) can be utilized for this target. However, the bulky volume in the electronic circuits and limited capacitances have long hindered the development of miniaturized and flexible electronics...
May 10, 2019: Small
Zhaofeng Zhai, Bing Leng, Nianjun Yang, Bing Yang, Lusheng Liu, Nan Huang, Xin Jiang
Tremendous demands for highly sensitive and selective nonenzymatic electrochemical biosensors have motivated intensive research on advanced electrode materials with high electrocatalytic activity. Herein, the 3D-networked CuO@carbon nanowalls/diamond (C/D) architecture is rationally designed, and it demonstrates wide linear range (0.5 × 10-6 -4 × 10-3 m), high sensitivity (1650 µA cm-2 mm-1 ), and low detection limit (0.5 × 10-6 m), together with high selectivity, great long-term stability, and good reproducibility in glucose determination...
May 10, 2019: Small
Peng Wang, Caixia Li, Shihua Dong, Xiaoli Ge, Peng Zhang, Xianguang Miao, Zhiwei Zhang, Chengxiang Wang, Longwei Yin
The large-scale commercial application of lithium-oxygen batteries (LOBs) is overwhelmed by the sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) associated with insoluble and insulated Li2 O2 . Herein, an elaborate design on a highly catalytic LOBs cathode constructed by N-doped carbon nanotubes (CNT) with in situ encapsulated Co2 P and Ru nanoparticles is reported. The homogeneously dispersed Co2 P and Ru catalysts can effectively modulate the formation and decomposition behavior of Li2 O2 during discharge/charge processes, ameliorating the electronically insulating property of Li2 O2 and constructing a homogenous low-impedance Li2 O2 /catalyst interface...
May 10, 2019: Small
Mengling Zhang, Huibo Wang, Bo Wang, Yurong Ma, Hui Huang, Yang Liu, Mingwang Shao, Bowen Yao, Zhenhui Kang
Carbon dots (CDs) have attracted increasing attention in disease therapy owing to their low toxicity and good biocompatibility. Their therapeutic effect strongly depends on the CDs structure (e.g., size or functional groups). However, the impact of CDs chirality on maltase and blood glucose level has not yet been fully emphasized and studied. Moreover, in previous reports, chiral CDs with targeted optical activity have to be synthesized from precursors of corresponding optical rotation, severely limiting chiral CDs design...
May 10, 2019: Small
Lei Sun, Yurui Xu, Ya Gao, Xinyu Huang, Shujun Feng, Jianmei Chen, Xuekun Wang, Leilei Guo, Meng Li, Xia Meng, Jikang Zhang, Junliang Ge, Xueying An, Dang Ding, Yadong Luo, Yu Zhang, Qing Jiang, Xinghai Ning
Cancer cells are susceptible to oxidative stress; therefore, selective elevation of intracellular reactive oxygen species (ROS) is considered as an effective antitumor treatment. Here, a liposomal formulation of dichloroacetic acid (DCA) and metal-organic framework (MOF)-Fe2+ (MD@Lip) has been developed, which can efficiently stimulate ROS-mediated cancer cell apoptosis in vitro and in vivo. MD@Lip can not only improve aqueous solubility of octahedral MOF-Fe2+ , but also generate an acidic microenvironment to activate a MOF-Fe2+ -based Fenton reaction...
May 9, 2019: Small
Seon Hee Lee, Nitee Kumari, Soumen Dutta, Xing Jin, Amit Kumar, Jung Hun Koo, In Su Lee
Multifunctionalized porous catalytic nanoarchitectures are highly desirable for a variety of chemical transformations; however, selective installation of different catalysts with spatial and functional precision working synergistically and predictably, is highly challenging. Here, a synthetic strategy is developed toward the customizable combination of orthogonally reactive metal nanocrystals within interconnected carbon-cavities as a compartmentalized framework by employing aminated-silica-directed thermal solid-state nanoconfined synthesis of metal nanocrystals and endotemplating concomitant carbonization-mediated interlocking, as key processes...
May 9, 2019: Small
Ahmed Ali Said, Jian Xie, Qichun Zhang
Organic n-type materials (e.g., fullerene derivatives, naphthalene diimides (NDIs), perylene diimides (PDIs), azaacene-based molecules, and n-type conjugated polymers) are demonstrated as promising electron transport layers (ETLs) in inverted perovskite solar cells (p-i-n PSCs), because these materials have several advantages such as easy synthesis and purification, tunable frontier molecular orbitals, decent electron mobility, low cost, good solubility in different organic solvents, and reasonable chemical/thermal stability...
May 9, 2019: Small
Shailendra Shakya, Yaping He, Xiaohong Ren, Tao Guo, Abi Maharjan, Ting Luo, Tingting Wang, Ramesh Dhakhwa, Balmukunda Regmi, Haiyan Li, Ruxandra Gref, Jiwen Zhang
The challenge of bacterial infection increases the risk of mortality and morbidity in acute and chronic wound healing. Silver nanoparticles (Ag NPs) are a promising new version of conventional antibacterial nanosystem to fight against the bacterial resistance in concern of the drug discovery void. However, there are several challenges in controlling the size and colloidal stability of Ag NPs, which readily aggregate or coalesce in both solid and aqueous state. In this study, a template-guided synthesis of ultrafine Ag NPs of around 2 nm using water-soluble and biocompatible γ-cyclodextrin metal-organic frameworks (CD-MOFs) is reported...
May 9, 2019: Small
Victor Pui-Yan Ma, Khalid Salaita
The ease of tailoring DNA nanostructures with sub-nanometer precision has enabled new and exciting in vivo applications in the areas of chemical sensing, imaging, and gene regulation. A new emerging paradigm in the field is that DNA nanostructures can be engineered to study molecular mechanics. This new development has transformed the repertoire of capabilities enabled by DNA to include detection of molecular forces in living cells and elucidating the fundamental mechanisms of mechanotransduction. This Review first describes fundamental aspects of force-induced melting of DNA hairpins and duplexes...
May 9, 2019: Small
Kuikui Xiao, Jin Wang, Zhen Chen, Yuhong Qian, Zheng Liu, Lili Zhang, Xiaohua Chen, Jilei Liu, Xiaofeng Fan, Ze Xiang Shen
Improved conductivity and suppressed dissolution of lithium polysulfides is highly desirable for high-performance lithium-sulfur (Li-S) batteries. Herein, by a facile solvent method followed by nitridation with NH3 , a 2D nitrogen-doped carbon structure is designed with homogeneously embedded Co4 N nanoparticles derived from metal organic framework (MOF), grown on the carbon cloth (MOF-Co4 N). Experimental results and theoretical simulations reveal that Co4 N nanoparticles act as strong chemical adsorption hosts and catalysts that not only improve the cycling performance of Li-S batteries via chemical bonding to trap polysulfides but also improve the rate performance through accelerating the conversion reactions by decreasing the polarization of the electrode...
May 9, 2019: Small
Yang Li, Zhi Du, Xinping Liu, Mengmeng Ma, Dongqin Yu, Yao Lu, Jinsong Ren, Xiaogang Qu
The inhibition of amyloid-β (Aβ) aggregation by photo-oxygenation has become an effective way of treating Alzheimer's disease (AD). New near-infrared (NIR) activated treatment agents, which not only possess high photo-oxygenation efficiency, but also show low biotoxicity, are urgently needed. Herein, for the first time, it is demonstrated that NIR activated black phosphorus (BP) could serve as an effective nontoxic photo-oxidant for amyloid-β peptide in vitro and in vivo. The nanoplatform BP@BTA (BTA: one of thioflavin-T derivatives) possesses high affinity to the Aβ peptide due to specific amyloid selectivity of BTA...
May 8, 2019: Small
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"