Add like
Add dislike
Add to saved papers

Advances in in vitro blood-air barrier models and the use of nanoparticles in COVID-19 research.

Respiratory infections caused by coronaviruses (CoVs) have become a major public health concern in the past two decades as revealed by the emergence of SARS-CoV in 2002, MERS-CoV in 2012, and SARS-CoV-2 in 2019. The most severe clinical phenotypes commonly arise from exacerbation of immune response following the infection of alveolar epithelial cells localized at the pulmonary blood-air barrier. Preclinical rodent models do not adequately represent the essential genetic properties of the barrier, thus necessitating the use of humanized transgenic models. However, existing monolayer cell culture models have so far been unable to mimic the complex lung microenvironment. In this respect, air-liquid interface (ALI) models, tissue engineered models, and organ-on-a-chip systems, which aim to better imitate the infection site microenvironment and microphysiology, are being developed to replace the commonly used monolayer cell culture models, and their use is becoming more widespread every day. On the other hand, studies on the development of nanoparticles that mimic respiratory viruses, and those nanoparticles used in therapy are progressing rapidly. The first part of this review describes in vitro models that mimic the blood-air barrier, the tissue interface that plays a central role in COVID-19 progression. In the second part of the review, nanoparticles mimicking the virus and/or designed to carry therapeutic agents are explained and exemplified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app