Add like
Add dislike
Add to saved papers

Targeted suppression of Dpt-specific B cells in humanized Rag2- γc- mouse model of HDM allergy.

Der p 1 is one of the major allergenic molecules of Dermatophagoides pteronyssinus, causing house dust mite (HDM) allergy. The pathological B cells produce allergen-specific IgE antibodies that mediate the hypersensitivity reaction, therefore the selective elimination of these B cells is a legitimate therapeutic goal in allergy. Chimeric molecule Dp51-72 able to cross-link B cell inhibitory complement receptor type 1 and BCR on Der p 1-specific B cells was constructed. The signaling capabilities of this molecule has been tested on human B cells. A humanized mouse model of HDM allergy has been used to test the in vivo effects of the chimeric molecule administration. Administering the chimeric molecule to immunodeficient Rag2- γc- mice transferred with PBMCs from allergic patients resulted in reduction of allergen-specific IgE antibodies in the sera and reduced infiltration of immune cells in lung histology preparations. Reduced numbers of human CD45+ and CD4+ cells in the lungs as well as inhibition of mast cell degranulation were also observed. The treatment with Dp51-72 chimera significantly decreased the local levels of anti-Dpt IgE antibodies in the Bronchoalveolar lavage fluid (BALF). The binding of the chimeric molecule to tonsillar B cells triggers the tyrosine phosphorylation of 30-32 kDa protein, which is most likely involved in the inhibitory process. Administration of constructed chimeric molecules to humanized mice with developed inflammation resulted in specific suppression of disease-associated IgE antibody-producing cells and preserved lung histology. This effective approach could be further developed to a therapeutic agent for treatment of patients with HDM allergy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app