Add like
Add dislike
Add to saved papers

Downregulation of miR-761 ameliorates radiation-induced pulmonary fibrosis by regulating PGC-1α.

Background: Radiation-induced pulmonary fibrosis (RIPF) is a serious complication in patients treated with transthoracic irradiation. To date, there are no effective drugs for RIPF treatment. In this study, we attempted to explore the function of miR-761 in RIPF, further investigate its potential mechanism and evaluate its effectiveness in the treatment of RIPF. Methods: qRT-PCR analysis was used to detect miR-761 and peroxisome proliferator-activated receptor gamma (PPARg) coactivator-1 (PGC-1α) expression. Western Blot (WB) assay was applied to verify the regulation of PGC-1α by miR-761 and the expression of fibrosis-related proteins. Gel contraction assay was performed to demonstrate the level of fibroblast activation in vitro. A mouse RIPF model was used to validate the anti-fibrotic effect of Antagomir761. Bioinformatics analysis and dual-luciferase reporter assays were utilized to confirm the regulation relationship between miR-761 and PGC-1α. Results: The results showed that miR-761 was significantly elevated in irradiated mice lungs and fibroblasts. Overexpression of miR-761 in vitro promoted fibroblast activation. Whereas inhibition of miR-761 attenuated the degree of RIPF and inhibited fibroblast activation. Mechanistically, PGC-1α was a direct and functional target of miR-761, overexpression of PGC-1α inhibited irradiation-induced fibroblast activation, and knockdown of PGC-1α caused miR-761 inhibitor loses its anti-activation ability in irradiated cells. Conclusion: Our findings demonstrated that miR-761 regulated RIPF by targeting PGC-1α. Inhibition of miR-761 restored PGC-1α expression and attenuated RIPF damage, and miR-761 was a potential target for preventing the development of RIPF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app