Add like
Add dislike
Add to saved papers

Biomimetic estrogen sensor based on soft colloidal probes.

An increasing number of reports substantiate the link between emerging estrogenic pollutants and a variety of adverse effects including developmental disorders, infertility, cancer and neurological disorders, threatening public health as well as environment. The detection of the diverse classes of estrogenic and antiestrogenic substances is still challenging due to analytics which needs to cover the whole range of compounds acting on estrogen receptors and the complex estrogen pathways. In this proof-of-concept study, we report a novel biomimetic detection scheme based on the specific recognition of estrogenic ligands by estrogen sulfotransferase 1E1 (SULT1E1), which acts as one of the key enzymes in estrogen homeostasis. SULT1E1 was site-specifically immobilized on transparent glass slides via a hexahistidine-tag in a multi-step procedure. Soft colloidal probes (SCPs) covalently functionalized with ligands of SULT1E1, namely estrone and estradiol 17-(β-D-glucuronide), served as adhesion probes. The various functionalization steps were analyzed and optimized using epifluorescence, confocal laser scanning as well as reflection interference contrast microscopy (RICM). A competitive SCP binding assay probing the elastic SCP deformation driven by the specific interaction between SCPs and the SULT1E1 decorated glass slides was employed in conjunction with an optical readout by RICM and automated image analysis to detect estrogenic compounds by their inhibition of SCP adhesion. This sensing concept has demonstrated exceptional specificity for estrogenic steroid compounds compared to structurally related substance classes and provides promising options for multiplexed assays and incorporation of other proteins of the endocrine system to fully capture the whole ensemble of hormonally active substances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app