Add like
Add dislike
Add to saved papers

Neuroinflammation induced by the peptide amyloid-β (25-35) increase the presence of galectin-3 in astrocytes and microglia and impairs spatial memory.

Neuropeptides 2019 Februrary 15
Galectins are animal lectins that bind to β-galactosides, such as lactose and N-acetyllactosamine, contained in glycoproteins or glycolipids. Galectin-1 (Gal-1) and Galectin-3 (Gal-3) are involved in pathologies associated with the inflammatory process, cell proliferation, adhesion, migration, and apoptosis. Recent evidence has shown that the administration of Amyloid-β 25-35 (Aβ25-35 ) into the hippocampus of rats increases the inflammatory response that is associated with memory impairment and neurodegeneration. Galectins could participate in the modulation of the neuroinflammation induced by the Aβ25-35 . The aim of this study was to evaluate the presence of Gal-1 and Gal-3 in the neuroinflammation induced by administration of Aβ25-35 into the hippocampus and to examine spatial memory in the Morris water maze. After the administration of Aβ25-35 , animals were tested for learning and spatial memory in the Morris water maze. Behavioral performance showed that Aβ25-35 didn't affect spatial learning but did impair memory, with animals taking longer to find the platform. On the day 32, hippocampus was examined for astrocytes (GFAP), microglia (Iba1), Gal-1 and Gal-3 via immunohistochemical analysis, and the cytokines IL-1β, TNF-α, IFN-γ by ELISA. This study's results showed a significant increase in the expression of Gal-3 in the microglia and astrocytes, while Gal-1 didn't increase in the dorsal hippocampus. The expression of galectins is associated with increased cytokines in the hippocampal formation of Aβ25-35 treated rats. These findings suggest that Gal-3 could participate in the inflammation induced by administration of Aβ25-35 and could be involved in the neurodegeneration progress and memory impairment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app