Journal Article
Review
Add like
Add dislike
Add to saved papers

Formation and evolution of aqueous organic aerosols via concurrent condensation and chemical aging.

We review recent results on the formation and evolution of aqueous organic aerosols via concurrent nucleation/condensation and chemical aging processes obtained mostly using the formalism of classical nucleation theory In this framework, an aqueous organic aerosol was modeled as a spherical particle of liquid solution of water and hydrophilic and hydrophobic condensable organic compounds; besides these compounds, the surrounding air contained some chemically reactive, non-condensable species. Hydrophobic organic molecules on the aerosol surface can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet. Such processing is most probably triggered by atmospheric hydroxyl radicals that abstract hydrogen atoms from surfactant molecules located on the aerosol surface (first step), resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. This approach was also applied to study a large subset of primary marine aerosols which can be initially treated using an "inverted micelle" model whereof the core consists of aqueous "salt" solution. Numerical evaluations suggest that the formation of cloud droplets on such (both aqueous hydrophilic/hydrophobic organic and marine) aerosols is most likely to occur via Köhler activation rather than via nucleation. The models allow one to determine the threshold parameters necessary for the Köhler activation of such aerosols. Furthermore, heterogeneous chemical reactions involved in the chemical aging of aerosols are most likely exothermic. Due to the release of the enthalpy of these reactions, the temperature of an aerosol particle during its chemical aging may become greater than the ambient (air) temperature. The analysis of the characteristic timescales of four most important processes involved suggests that this effect may play a significant impeding role in the formation of an ensemble of aqueous secondary organic aerosols via nucleation and, hence, must be taken into account in atmospheric aerosol and global climate models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app