Read by QxMD icon Read

Advances in Colloid and Interface Science

Yitong Wang, Luxuan Guo, Shuli Dong, Jiwei Cui, Jingcheng Hao
Microgels are colloidal particles with crosslinked polymer networks and dimensions ranging from tens of nanometers to micrometers. Specifically, smart microgels are fascinating capable of responding to biological signals in vivo or remote triggers and making the possible for applications in biomaterials and biomedicines. Therefore, how to fundamentally design microgels is an urgent problem to be solved. In this review, we put forward our important fundamental opinions on how to devise the intelligent microgels for cancer therapy, biosensing and biological lubrication...
February 8, 2019: Advances in Colloid and Interface Science
Camilla L Owens, Geoffrey R Nash, Kathryn Hadler, Robert S Fitzpatrick, Corby G Anderson, Frances Wall
Apatite subspecies depend on their halogen and hydroxyl content; chlorapatite, hydroxylapatite and fluorapatite, with additional substitution of other elements within the lattice such as rare earth elements (REE), sodium, strontium and manganese also possible. Rare earth elements are vital to green and emerging technologies, with demand set to outstrip supply. Apatite provides a possible future source of REE. Processing rare earth deposits is often complex, with surface behaviour having a significant effect on the optimization of a process flow sheet...
January 24, 2019: Advances in Colloid and Interface Science
Mahnaz Amiri, Masoud Salavati-Niasari, Ahmad Akbari
A valuable site-directed application in the field of nanomedicine is targeted drug delivery using magnetic metal oxide nanoparticles by applying an external magnetic field at the target tissue. The magnetic property of these structures allows controlling the orientation and location of particles by changing the direction of the applied external magnetic field. Pharmaceutical design and research in the field of nanotechnology offer novel solutions for diagnosis and therapies. This review summarizes magnetic nanoparticles and magnetic spinel ferrit's properties, remarkable approaches in magnetic liposomes, magnetic polymeric nanoparticles, MRI, hyperthermia and especially magnetic drug delivery systems, which have recently developed in the field of magnetic nanoparticles and their medicinal applications...
January 23, 2019: Advances in Colloid and Interface Science
Yuri S Djikaev, Eli Ruckenstein
We review recent results on the formation and evolution of aqueous organic aerosols via concurrent nucleation/condensation and chemical aging processes obtained mostly using the formalism of classical nucleation theory In this framework, an aqueous organic aerosol was modeled as a spherical particle of liquid solution of water and hydrophilic and hydrophobic condensable organic compounds; besides these compounds, the surrounding air contained some chemically reactive, non-condensable species. Hydrophobic organic molecules on the aerosol surface can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet...
January 14, 2019: Advances in Colloid and Interface Science
Sabry M Shaheen, Daniel S Alessi, Filip M G Tack, Yong Sik Ok, Ki-Hyun Kim, Jon Petter Gustafsson, Donald L Sparks, Jörg Rinklebe
Vanadium (V), although serving as an important component of industrial activities, has bioinorganic implications to pose highly toxic hazards to humans and animals. Soils and sediments throughout the world exhibit wide ranges of vanadium concentrations. Although vanadium toxicity varies between different species, it is mainly controlled by soil redox potential (EH ). Nonetheless, knowledge of the redox geochemistry of vanadium lags in comparison to what is known about other potentially toxic elements (PTEs)...
January 14, 2019: Advances in Colloid and Interface Science
Florine Eudier, Géraldine Savary, M Grisel, C Picard
Physico-chemical properties such as surface free energy, polarity or hydrophobicity of solid surfaces have been largely studied in literature because they are involved in many physical phenomena: adhesion, friction, wetting … Nowadays, the study of biointerfaces is of great interest for the medical, the pharmaceutical or the cosmetic field but also for material design researches, especially for the development of biomimetic surfaces. The present paper focuses on a particular biointerface, namely skin, which is the most extended organ of the human body...
December 12, 2018: Advances in Colloid and Interface Science
Alex Nikolov, Pingkeng Wu, Darsh Wasan
When an air bubble or an oil droplet in a nanofluid (liquid containing dispersed nanoparticles) approaches a solid surface, a nanofluid film is formed between the bubble or drop and a solid substrate. The nanoparticles confined in the film surfaces tend to self-layer and the film thins in a stepwise manner. The wetting behavior and film stability criteria valid for the classical molecularly thin films cannot be applied to nanofilm. Here we present an overview of the structure and stability of multilayer nanofilms wetting solid surfaces...
December 7, 2018: Advances in Colloid and Interface Science
Zahra Shariatinia
Chitosan (CS) is a linear polysaccharide which is achieved by deacetylation of chitin, which is the second most plentiful compound in nature, after cellulose. It is a linear copolymer of β-(1 → 4)-linked 2-acetamido-2-deoxy-β-d-glucopyranose and 2-amino-2-deoxy-β-d-glucopyranose. It has appreciated properties such as biocompatibility, biodegradability, hydrophilicity, nontoxicity, high bioavailability, simplicity of modification, favorable permselectivity of water, outstanding chemical resistance, capability to form films, gels, nanoparticles, microparticles and beads as well as affinity to metals, proteins and dyes...
November 30, 2018: Advances in Colloid and Interface Science
Weilin Liu, Aiqian Ye, Feifei Han, Jianzhong Han
During the past 50 years, there has been increased interest in liposomes as carriers of pharmaceutical, cosmetic, and agricultural products. More recently, much progress has been made in the use of surface-modified formulas in experimental food matrices. However, before the viability and the applications of nutrients in liposomal form in the edible field can be determined, the digestion behavior along the human gastrointestinal tract (GIT) must be clarified. In vitro digestion models, from static models to dynamic mono-/bi-/multi-compartmental models, are increasingly being developed and applied as alternatives to in vivo assays...
November 27, 2018: Advances in Colloid and Interface Science
Anwesha Sarkar, Shuning Zhang, Melvin Holmes, Rammile Ettelaie
Lipid digestion is a bio-interfacial process that is largely governed by the binding of the lipase-colipase-biosurfactant (bile salts) complex onto the surface of emulsified lipid droplets. Therefore, engineering oil-water interfaces that prevent competitive displacement by bile salts and/or delay the transportation of lipase to the lipidoidal substrate can be an effective strategy to modulate lipolysis in human physiology. In this review, we present the mechanistic role of Pickering emulsions i.e. emulsions stabilised by micron-to-nano sized particles in modulating the important fundamental biological process of lipid digestion by virtue of their distinctive stability against coalescence and resilience to desorption by intestinal biosurfactants...
January 2019: Advances in Colloid and Interface Science
Iuliia S Elizarova, Paul F Luckham
The electrostatic layer-by-layer technique for fabrication of multi-layered structures of various sizes and shapes using flat and colloidal templates coupled with polyelectrolyte layer-forming materials has attracted significant interest among both academic and industrial researchers due to its versatility and relative simplicity of the procedures involved in its execution. Fabrication of the multi-layered structures using the electrostatic layer-by-layer method involves several distinct stages each of which holds great importance when considering the production of a high-quality product...
December 2018: Advances in Colloid and Interface Science
Muhammad Asif, Ayesha Aziz, Muhammad Azeem, Zhengyun Wang, Ghazala Ashraf, Fei Xiao, Xuedong Chen, Hongfang Liu
The development of layered double hydroxides (LDHs), also known as anionic clays with uniform distribution of metal ions and facile exchangeability of intercalated anions, are now appealing an immense deal of attention in synthesis of multifunctional materials. In electrochemical biosensors, LDHs provide stable environment for immobilization of enzymes or other sensing materials and play crucial roles in development of clinical chemistry, point-of-care devices through analysis of various small molecule metabolites excreted by biological processes which in turn serve as molecular biomarkers for medical diagnostics...
December 2018: Advances in Colloid and Interface Science
Mark A Borden, Kang-Ho Song
In this review, a brief history and current state-of-the-art is given to stimulate the rational design of new microbubbles through the reverse engineering of current ultrasound contrast agents (UCAs). It is shown that an effective microbubble should be biocompatible, echogenic and stable. Physical mechanisms and engineering calculations have been provided to illustrate these properties and how they can be achieved. The reverse-engineering design paradigm is applied to study current FDA-approved and commercially available UCAs...
December 2018: Advances in Colloid and Interface Science
Mengsu Peng, Anh V Nguyen, Jianlong Wang, Reinhard Miller
We reviewed eight commonly used equilibrium adsorption models and examined their underlying assumptions, fitting qualities, and parameter stabilities. We compared several objective functions that have been applied to curve fitting analysis and a few statistics tests that have been performed to evaluate regression quality. The iteratively reweighted least squares algorithm was selected as the most suitable regression method for adsorption models in the presence of heteroscedasticity. The fraction of unexplained variance was selected to indicate the model fitting quality...
December 2018: Advances in Colloid and Interface Science
Iván Rodríguez Durán, Gaétan Laroche
Glass- and polymer-based materials have become essential in the fabrication of a multitude of elements, including eyeglasses, automobile windshields, bathroom mirrors, greenhouses, and food packages, which unfortunately mist up under typical operating conditions. Far from being an innocuous phenomenon, the formation of minute water drops on the surface is detrimental to their optical properties (e.g., light-transmitting capability) and, in many cases, results in esthetical, hygienic, and safety concerns. In this context, it is therefore not surprising that research in the field of fog-resistant surfaces is gaining in popularity, particularly in recent years, in view of the growing number of studies focusing on this topic...
November 24, 2018: Advances in Colloid and Interface Science
F J Vernerey, E Benet, L Blue, A K Fajrial, S Lalitha Sridhar, J S Lum, G Shakya, K H Song, A N Thomas, M A Borden
Aggregations of social organisms exhibit a remarkable range of properties and functionalities. Multiple examples, such as fire ants or slime mold, show how a population of individuals is able to overcome an existential threat by gathering into a solid-like aggregate with emergent functionality. Surprisingly, these aggregates are driven by simple rules, and their mechanisms show great parallelism among species. At the same time, great effort has been made by the scientific community to develop active colloidal materials, such as microbubbles or Janus particles, which exhibit similar behaviors...
November 22, 2018: Advances in Colloid and Interface Science
S Ezrahi, A Aserin, N Garti
Cancer is the second cause of death worldwide, exceeded only by cardiovascular diseases. The prevalent treatment currently used against metastatic cancer is chemotherapy. Among the most studied drugs that inhibit neoplastic cells from acquiring unlimited replicative ability (a hallmark of cancer) are the taxanes. They operate via a unique molecular mechanism affecting mitosis. In this review, we show this mechanism for one of them, paclitaxel, and for other (non-taxanes) anti-mitotic drugs. However, the use of paclitaxel is seriously limited (its bioavailability is <10%) due to several long-standing challenges: its poor water solubility (0...
November 17, 2018: Advances in Colloid and Interface Science
Abhilash Sankaran, Stoyan I Karakashev, Soumyadip Sett, Nikolay Grozev, Alexander L Yarin
This is a review article on the basic and the latest achievements on superspreading. The complete and fast spreading of droplets on many surfaces in the nature is a special phenomenon discovered in 1960s. Intensive studies on this phenomenon have been conducted since that time, but the mechanism of superspreading remained not completely unveiled till nowadays. Here we scrutinized the basic literature on superspreading from the last 25 years and also present results related to superspreaders acquired in the present work...
November 15, 2018: Advances in Colloid and Interface Science
Reinhard Höhler, Denis Weaire
When two immersed bubbles are pushed against each other, a facet is formed at their contact, leading to an increase of interfacial energy and hence a repulsive interaction force. Foams (and concentrated emulsions) in mechanical equilibrium may thus be modeled as an assembly of soft elastic interacting particles. Such a model has been used in many studies of their structure and mechanical properties, in particular near the jamming transition (or wet limit) where the contact forces are so small that bubbles remain roughly spherical...
November 9, 2018: Advances in Colloid and Interface Science
Vera Carniello, Brandon W Peterson, Henny C van der Mei, Henk J Busscher
Biofilm formation is initiated by adhesion of individual bacteria to a surface. However, surface adhesion alone is not sufficient to form the complex community architecture of a biofilm. Surface-sensing creates bacterial awareness of their adhering state on the surface and is essential to initiate the phenotypic and genotypic changes that characterize the transition from initial bacterial adhesion to a biofilm. Physico-chemistry has been frequently applied to explain initial bacterial adhesion phenomena, including bacterial mass transport, role of substratum surface properties in initial adhesion and the transition from reversible to irreversible adhesion...
November 2018: Advances in Colloid and Interface Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"