Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Behavioral, Neurochemical and Brain Oscillation Abnormalities in an Experimental Model of Acute Liver Failure.

Neuroscience 2019 March 2
Hepatic encephalopathy (HE) represents a brain dysfunction caused by both acute and chronic liver failures, and its severity deeply affects the prognosis of patients with impaired liver function. In its pathophysiology, ammonia levels and glutamatergic system hyperactivity seem to play a pivotal role in the disruption of brain homeostasis. Here, we investigate important outcomes involved in behavioral performance, electroencephalographic patterns, and neurochemical parameters to better characterize the well-accepted animal model of acute liver failure (ALF) induced by subtotal hepatectomy (92% removal of tissue) that produces ALF. This study was divided into three cohorts: (1) rats clinically monitored after hepatectomy every 6 h for 96 h or until death; (2) rats tested in an open-field task (OFT) before and after surgery and had blood, cerebrospinal fluid, and brain tissue collected after the last OFT; and (3) rats that had continuous EEGs recorded before and after surgery for 3 days. The hepatectomized rats presented significant motor behavioral changes accompanied by important abnormalities in classical blood laboratory parameters of ALF, and EEG features suggestive of HE and deep disturbances in the brain glutamatergic system. Using an animal model of ALF induced via subtotal hepatectomy, this work provides a comprehensive and reliable experimental model that increases the opportunity for studying the effects of new treatment strategies to be explored in an unprecedented way. It also presents insights into the pathophysiology of HE in a reproducible model of ALF, which correlates important neurochemical and EEG aspects of the syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app