Add like
Add dislike
Add to saved papers

Decolorization of mordant yellow 1 using Aspergillus sp. TS-A CGMCC 12964 by biosorption and biodegradation.

In this report, the decolorization features of extracellular enzymes and mycelia separately prepared from Aspergillus sp. TS-A CGMCC 12,964 (120 h) were investigated. The fermentation broth of TS-A degraded 98.6% of Mordant Yellow 1 (50 mg/L) at an initial pH 6 within 1 h with over 70% of the dye (50 mg/L) degraded by extracellular enzymes and 18.8% removed by live mycelia. The degradation products of the dye were analyzed by UV-Vis and FTIR spectra. The decolorization rates of extracellular enzymes and mycelia were examined under different contact periods, dye concentrations and pH values. The extracellular enzymes exhibited excellent degradation activity under weak acidic conditions. In addition, biosorption models of mycelia fitted well the Langmuir isotherm model and the pseudo-second-order kinetic equation. Although the decolorization process was achieved through the synergistic effects of mycelia and extracellular enzymes, decolorization was dominated by the biodegradation activity of the extracellular enzymes from TS-A.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app