Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Structure of the S1 subunit C-terminal domain from bat-derived coronavirus HKU5 spike protein.

Virology 2017 July
Accumulating evidence indicates that MERS-CoV originated from bat coronaviruses (BatCoVs). Previously, we demonstrated that both MERS-CoV and BatCoV HKU4 use CD26 as a receptor, but how the BatCoVs evolved to bind CD26 is an intriguing question. Here, we solved the crystal structure of the S1 subunit C-terminal domain of HKU5 (HKU5-CTD), another BatCoV that is phylogenetically related to MERS-CoV but cannot bind to CD26. We observed that the conserved core subdomain and those of other betacoronaviruses (betaCoVs) have a similar topology of the external subdomain, indicating the same ancestor of lineage C betaCoVs. However, two deletions in two respective loops located in HKU5-CTD result in conformational variations in CD26-binding interface and are responsible for the non-binding of HKU5-CTD to CD26. Combined with sequence variation in the HKU5-CTD receptor binding interface, we propose the necessity for surveilling the mutation in BatCoV HKU5 spike protein in case of bat-to-human interspecies transmission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app