Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Significantly upregulated TACSTD2 and Cyclin D1 correlate with poor prognosis of invasive ductal breast cancer.

The tumor-associated calcium signal transducer 2 (TACSTD2) gene has been reported to be highly expressed in many types of human epithelial cancers, and is associated with tumor metastasis and poor prognosis. The aims of the present investigation were to analyze the TACSTD2 and Cyclin D1 expression at the mRNA and protein levels and to assess its prognostic significance in invasive ductal breast cancer (IDC). The expressions of TACSTD2 and Cyclin D1 in IDC tissues were consistently higher than those in the tumor-adjacent non-malignant tissues by a one-step real-time polymerase chain reaction and immunohistochemistry (P<0.001 and P=0.023, respectively). The statistical analysis of clinicopathologic characteristics and immunohistochemistry by the χ(2) test showed that the high expression of TACSTD2 in IDC was correlated to histological grade (P=0.023), P53 status (P=0.042), Cyclin D1 status (P<0.001), lymph node metastasis (P<0.001), distant metastasis (P=0.004) and TNM staging (P<0.001). Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognosis of IDC. These analyses also showed that a high TACSTD2 expression (P=0.003), a high Cyclin D1 expression (P=0.041), and lymph node metastasis (P=0.006) were independent prognosis factors. Collectively, our studies demonstrated that the high expression of TACSTD2 correlates with a poor prognosis in IDC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app