18F9 (4-(3,6-bis (ethoxycarbonyl)-4,5,6,7-tetrahydrothieno (2,3-c) pyridin-2-ylamino)-4-oxobutanoic acid) enhances insulin-mediated glucose uptake in vitro and exhibits antidiabetic activity in vivo in db/db mice

Rathinasabapathy Anandharajan, Sufyan G Sayyed, Lalit S Doshi, Pooja Dixit, Prakash G Chandak, Amol V Dixit, Manoja K Brahma, Nitin J Deshmukh, Ravindra Gupte, Anagha Damre, Jaspreet Suthar, Muralidhara Padigaru, Somesh D Sharma, Kumar V S Nemmani
Metabolism: Clinical and Experimental 2009, 58 (10): 1503-16
Insulin resistance is central to the pathogenesis of type 2 diabetes mellitus. Previous studies have demonstrated that compounds that cause adipogenesis and improve glucose uptake in 3T3-L1 cells are potential insulin sensitizers. Therefore, we evaluated one such compound, 18F9, for (1) adipogenesis in human subcutaneous preadipocyte (SQ) cells, (2) glucose uptake in human skeletal muscle myotubes and SQ cells, and (3) antidiabetic activity in db/db mice. We also investigated its effect on ex vivo glucose uptake in soleus muscle isolated from continuously treated db/db mice. Gene expression profiling in soleus muscle and epididymal fat of db/db mice was performed to understand its effect on glucose metabolism, lipid metabolism, and thermogenesis. 18F9 enhanced adipogenesis in SQ cells and increased glucose uptake in SQ and human skeletal muscle myotubes cells. In db/db mice, 18F9 exhibited dose-dependent reduction in plasma glucose and insulin level. Interestingly, 18F9 was as efficacious as rosiglitazone but did not cause body weight gain and hepatic adverse effects. In addition, 18F9 demonstrated no change in plasma volume in Wistar rats. Furthermore, it enhanced ex vivo glucose uptake in soleus muscles in these mice, which substantiates our in vitro findings. Human peroxisome proliferator activated receptor-gamma transactivation assay revealed a weak peroxisome proliferator activated receptor-gamma transactivation potential (44% of rosiglitazone at 10 mumol/L) of 18F9. Gene expression profiling indicated that 18F9 increased insulin sensitivity mainly through a phosphoinositide 3-kinase-dependent mechanism. 18F9 also up-regulated genes involved in lipid transport and synthesis at par with rosiglitazone. Unlike rosiglitazone, 18F9 elevated the expression of Pdk4. In addition, 18F9 elevated the expression of glycogen synthase and adiponectin significantly higher than rosiglitazone. Taken together, these observations suggest that 18F9 is a safer and potent insulin sensitizer that demonstrates promising antidiabetic activity and is worth further development.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"