Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Omega-conotoxin CVIB differentially inhibits native and recombinant N- and P/Q-type calcium channels.

Omega-conotoxins are routinely used as selective inhibitors of different classes of voltage-gated calcium channels (VGCCs) in excitable cells. In the present study, we examined the potent N-type VGCC antagonist omega-conotoxin CVID and non-selective N- and P/Q-type antagonist CVIB for their ability to block native VGCCs in rat dorsal root ganglion (DRG) neurons and recombinant VGCCs expressed in Xenopus oocytes. Omega-conotoxins CVID and CVIB inhibited depolarization-activated whole-cell VGCC currents in DRG neurons with pIC50 values of 8.12 +/- 0.05 and 7.64 +/- 0.08, respectively. Inhibition of Ba2+ currents in DRG neurons by CVID (approximately 66% of total) appeared to be irreversible for > 30 min washout, whereas Ba2+ currents exhibited rapid recovery from block by CVIB (> or = 80% within 3 min). The recoverable component of the Ba2+ current inhibited by CVIB was mediated by the N-type VGCC, whereas the irreversibly blocked current (approximately 22% of total) was attributable to P/Q-type VGCCs. Omega-conotoxin CVIB reversibly inhibited Ba2+ currents mediated by N- (Ca(V)2.2) and P/Q- (Ca(V)2.1), but not R- (Ca(V)2.3) type VGCCs expressed in Xenopus oocytes. The alpha2delta1 auxiliary subunit co-expressed with Ca(V)2.2 and Ca(V)2.1 reduced the sensitivity of VGCCs to CVIB but had no effect on reversibility of block. Determination of the NMR structure of CVIB identified structural differences to CVID that may underlie differences in selectivity of these closely related conotoxins. Omega-conotoxins CVIB and CVID may be useful as antagonists of N- and P/Q-type VGCCs, particularly in sensory neurons involved in processing primary nociceptive information.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app