Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fenfluramine-induced immunosuppression: an in vivo analysis.

We examined the immunomodulatory potential of acute fenfluramine administration, by measuring production of the pro-inflammatory cytokines interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha in response to an in vivo challenge with bacterial lipopolysaccharide in rats. Fenfluramine (2.5-10 mg/kg) suppressed tumor necrosis factor-alpha production, but only fenfluramine (5 and 10 mg/kg) suppressed interleukin-1beta production. Fenfluramine (10 mg/kg)-induced suppression of interleukin-1beta and tumor necrosis factor-alpha production persisted for 6 and 24 h, respectively. Using in vitro analyses, we demonstrated that the immunosuppressive effect of fenfluramine was not due to a direct effect on immune cells. As fenfluramine activates the hypothalamic pituitary adrenal axis, we examined the ability of the glucocorticoid receptor antagonist mifepristone to block fenfluramine-induced immunosuppression. However, mifepristone (10 mg/kg) failed to attenuate the suppressive effect of fenfluramine on interleukin-1beta and tumor necrosis factor-alpha production, indicating that glucocorticoids do not mediate fenfluramine-induced immunosuppression. We also assessed the effect of fenfluramine on production of the anti-inflammatory cytokine interleukin-10, as interleukin-10 can suppresses pro-inflammatory cytokine production. Fenfluramine (10 mg/kg) increased interleukin-10 production following an in vivo lipopolysaccharide challenge. However, the ability of fenfluramine to suppress tumor necrosis factor-alpha production cannot be accounted for by increased interleukin-10 production, as pretreatment with the beta-adrenoceptor antagonist nadolol completely blocked the increase in interleukin-10 without altering the suppression of tumor necrosis factor-alpha induced by fenfluramine. Taken together, these data demonstrate that fenfluramine promotes an immunosuppressive cytokine phenotype in vivo. The suppression of pro-inflammatory cytokines is not due to a direct effect the drug on immune cells, and also occurs independently of glucocorticoid receptor activation. In addition, whilst fenfluramine increases production of the anti-inflammatory cytokine interleukin-10, this cannot account for the suppression of the pro-inflammatory cytokine tumor necrosis factor-alpha induced by fenfluramine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app