Add like
Add dislike
Add to saved papers

Effects of changes in left ventricular contractility on indexes of contractility in mice.

Measurement of left ventricular (LV) function is often overlooked in murine studies, which have been used to analyze the effects of genetic manipulation on cardiac phenotype. The goal of this study was to address the effects of changes in LV contractility on indexes of contractility in mice. LV function was assessed in vivo in closed-chest mice by echocardiography and by LV catheterization using a conductance pressure-volume (P-V) catheter with three different interventions that alter contractility by 1) atrial pacing to increase inotropy by augmentation of the force-frequency relation (modest increment of inotropy), 2) dobutamine to maximize inotropy, and 3) esmolol infusion to decrease contractility. Load-independent parameters derived from P-V relations, such as slope of end-systolic P-V relations (ESPVR) and slope of the first maximal pressure derivative over time (dP/dt(max))-end-diastolic volume relation (dP/dt-EDV), and standard echocardiographic parameters were measured. The dP/dt-EDV changed the most among parameters after atrial pacing and dobutamine infusion (percent change, 162.8 +/- 95.9% and 271.0 +/- 44.0%, respectively). ESPVR was the most affected by a decrease in LV contractility during esmolol infusion (percent change, -49.8 +/- 8.3%). However, fractional shortening failed to detect changes in contractility during atrial pacing and esmolol infusion and its percent change was <20%. This study demonstrated that contractile parameters derived from P-V relations change the most during a change in LV contractility and should therefore best detect a small change in contractility in mice. Heart rate has a modest but significant effect on P-V relationship-derived indexes and must be considered in the evaluation of murine cardiac physiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app