Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels.

To promote axonal regeneration in the injured adult spinal cord, a two-phase repair strategy was employed to (i) bridge a spinal cord hemilesion cavity with a grafted Schwann cell (SC)-seeded mini-channel, and (ii) promote axonal re-entry into the distal cord by infusing two neurotrophins, BDNF and/or NT-3, directly into the distal cord parenchyma. Here we report that infusion of two neurotrophins, delivered alone or in combination, effectively promotes axonal outgrowth from SC-seeded mini-channels into the distal host spinal cord. When an anterogradely transported marker, PHA-L or BDA, was injected into the spinal cord 3 mm rostral to the graft, a large number of axons was observed to regenerate from the SC graft into the distal cord in neurotrophin-treated groups. A subpopulation of these axons was found to grow up to 6 mm within the distal spinal cord. These axons, which were confined mainly within the grey matter, arborized and formed structures which resemble terminal boutons. In channels containing no SCs, the infusion of neurotrophins did not promote axonal ingrowth from the proximal cord stump. In cases which received SC grafts but no neurotrophin infusion, axonal re-entry into the distal cord was limited. Thus, the present study demonstrates that regenerating axons not only cross a lesion site when a permissive cellular bridge is provided but also penetrate into the distal host spinal cord and elongate for a distance of several cord segments after the infusion of two neurotrophins. The latter event is prerequisite for establishment of appropriate connections between regenerating axons and target neurons and thus, functional recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app