Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The inhibitory action of sodium arsenite on lipopolysaccharide-induced nitric oxide production in RAW 267.4 macrophage cells: a role of Raf-1 in lipopolysaccharide signaling.

Journal of Immunology 2001 Februrary 2
The effect of sodium arsenite (SA) on LPS-induced NO production in RAW 267.4 murine macrophage cells was studied. SA pretreatment of LPS-stimulated RAW cells resulted in a striking reduction in NO production. No significant difference in LPS binding was observed between RAW cells pretreated with SA and control untreated RAW cells, suggesting that SA might impair the intracellular signal pathway for NO production. SA inhibited LPS-induced NF-kappaB activation by preventing loss of IkappaB-alpha and -beta. Furthermore, SA blocked phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2), but not phosphorylation of p38 and c-Jun N-terminal kinase. SA treatment resulted in the disappearance of Raf-1, suggesting that it might cause the inhibition of the Erk1/2 mitogen-activated protein (MAP) kinase pathway. The SA-mediated loss of Raf-1 also abolished LPS-induced NF-kappaB activation as well as the Erk1/2 pathway. The dominant negative mutant of MAP kinase kinase 1 inhibited both NO production and NF-kappaB activation in LPS-stimulated RAW cells. Taken together, these results indicate that the inhibitory action of SA on NO production in LPS-stimulated macrophages might be due to abrogation of inducible NO synthase induction, and it might be closely related to inactivation of the NF-kappaB and Erk1/2 MAP kinase pathways through loss of Raf-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app