In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Influence of an extracellular acidosis on excitatory synaptic transmission and long-term potentiation in the CA1 region of rat hippocampal slices.

The effects of extracellular acidification on the synaptic function and neuronal excitability were investigated on the hippocampal CA1 neurons. A decrease of extracellular pH from 7.4 to 6.7 did not alter either the resting membrane potential or the neuronal membrane input resistance. Extracellularly recorded field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs) were significantly reduced by acidosis. Additionally, the amplitude of presynaptic fiber volley was also reduced. The sensitivity of postsynaptic neurons to N-methyl-D-aspartate, but not to alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, was depressed by acidosis. Lowering of extracellular pH did not significantly affect the magnitude of paired-pulse facilitation (PPF) of synaptic transmission. Acidosis also reversibly limited the sustained repetitive firing (RF) of Na(+)-dependent action potentials elicited by injection of depolarizing current pulses into the pyramidal cells. The limitation of RF by extracellular acidification was accompanied by the reduction of the maximal rate of rise (;V(max)) of the action potentials and the amplitude of afterhyperpolarization. Neither the Na (+)/H (+) antiporter blocker 5-(N -ethyl -N -isopropyl)-amiloride nor the selective adenosine A (1) receptor antagonist 1,3-dipropyl -8-cyclopentylxanthine, however, affected the acidosis -induced synaptic depression. It was also found that acidosis did not affect either the induction r maintenance of long -term potentiation (LTP) at Schaffer collateral -CA 1 synapses. These results suggest that the extracellular acidosis -induced synaptic depression is likely to result from an inhibition of presynaptic Na (+) conductance, thereby decreasing the amplitude of action potentials in individual afferent fibers or the number of afferent fiber activation to stimuli and then indirectly affecting the signaling processes contributing to trigger neurotransmitter release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app