Formation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha

D Dennis, M McCoy, A Stangl, H E Valentin, Z Wu
Journal of Biotechnology 1998 October 8, 64 (2-3): 177-86
The acetoacetyl-CoA reductase and the polyhydroxyalkanoate (PHA) synthase from Ralstonia eutropha (formerly Alcaligenes eutrophus) were expressed in Escherichia coli, Klebsiella aerogenes, and PHA-negative mutants of R. eutropha and Pseudomonas putida. While expression in E. coli strains resulted in the accumulation of poly(3-hydroxybutyrate) [PHB], strains of R. eutropha, P. putida and K. aerogenes accumulated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [poly(3HB-co-3HHx)] when even chain fatty acids were provided as carbon source, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)] when odd chain fatty acids were provided as carbon source. This suggests that fatty acid degradation can be directly accessed employing only the acetoacetyl-CoA reductase and the PHA synthase. This is also the first proof that the PHA synthase from R. eutropha can incorporate 3-hydroxyhexanoate (3HHx) into PHA and has, therefore, a broader substrate specificity than previously described.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"