Add like
Add dislike
Add to saved papers

Developing Air-Stable n-Type SWCNT-Based Composites with High Thermoelectric and Robust Mechanical Properties for Wearable Electronics.

Flexible organic thermoelectric generators are gaining prominence in wearable electronics, leveraging body heat as an energy source. Their advancement is hindered by the scarcity of air-stable n-type organic materials with robust mechanical properties. This study introduces two new polymers (HDCN4 and HDCN8), created through polycondensation of paraformaldehyde and diamine-terminated poly(ethylene glycol) (PEGDA) with molecular weights of 4000 and 8000 g/mol into single-walled carbon nanotubes (SWCNTs). The resulting HDCN4/SWCNT and HDCN8/SWCNT composites show impressive power factors of 225.9 and 108.2 μW m-1 K-2 , respectively, and maintain over 90% in air for over four months without encapsulation. The HDCN4/SWCNT composite also demonstrates significant tensile strength (33.2 MPa) and flexibility (up to 10% strain), which is currently the best mechanically n-type thermoelectric material with such a high power factor reported in the literature. A thermoelectric device based on HDCN4/SWCNT generates 4.2 μW of power with a 50 K temperature difference. Additionally, when used in wearable temperature sensors, these devices exhibit high mechanical reliability and a temperature resolution of 0.1 K. This research presents a viable method to produce air-stable n-type thermoelectric materials with excellent performance and mechanical properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app