Add like
Add dislike
Add to saved papers

Multi-epitope vaccine design against leishmaniasis using IFN-γ inducing epitopes from immunodominant gp46 and gp63 proteins.

There is no currently approved human vaccine against leishmaniasis. Utilization of immunogenic antigens and their epitopes capable of enhancing immune responses against leishmaniasis is a crucial step for rational in silico vaccine design. The objective of this study was to generate and evaluate a potential vaccine candidate against leishmaniasis, designed by immunodominant proteins from gp46 and gp63 of Leishmania major, which can stimulate helper T-lymphocytes (HTL) and cytotoxic T-lymphocytes (CTL). For this aim, the IFN-γ-inducing MHC-I and MHC-II binders were predicted for each examined protein (gp46 and gp63) and connected with appropriate linkers, along with an adjuvant (Mycobacterium tuberculosis L7/L12) and a histidine tag. The vaccine's stability, antigenicity, structure, and interaction with the TLR-4 receptor were evaluated in silico. The resulting chimeric vaccine was composed of 344 amino acids and had a molecular weight of 35.64 kDa. Physico-chemical properties indicated that it was thermotolerant, soluble, highly antigenic, and non-allergenic. Predictions of the secondary and tertiary structures were made, and further analyses confirmed that the vaccine construct could interact with the human TLR-4 receptor. Virtual immune simulation demonstrated strong stimulation of T-cell responses, particularly by an increase in IFN-γ, following vaccination. In summary, the in silico data indicated that the vaccine candidate showed high antigenicity in humans. It was also found to trigger significant levels of clearance mechanisms and other components of the cellular immune profile. Nevertheless, further wet experiments are required to properly assess the efficacy of this multi-epitope vaccine candidate against leishmaniasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app