Add like
Add dislike
Add to saved papers

CAM3.0: Determining cell type composition and expression from bulk tissues with fully unsupervised deconvolution.

Bioinformatics 2024 Februrary 27
MOTIVATION: Complex tissues are dynamic eco-systems consisting of molecularly distinct yet interacting cell types. Computational deconvolution aims to dissect bulk tissue data into cell type compositions and cell-specific expressions. With few exceptions, most existing deconvolution tools exploit supervised approaches requiring various types of references that may be unreliable or even unavailable for specific tissue microenvironments.

RESULTS: We previously developed a fully unsupervised deconvolution method-Convex Analysis of Mixtures (CAM), that enables estimation of cell type composition and expression from bulk tissues. We now introduce CAM3.0 tool that improves this framework with three new and highly efficient algorithms, namely, radius-fixed clustering to identify reliable markers, linear programming to detect an initial scatter simplex, and a smart floating search for the optimum latent variable model. The comparative experimental results obtained from both realistic simulations and case studies show that the CAM3.0 tool can help biologists more accurately identify known or novel cell markers, determine cell proportions, and estimate cell-specific expressions, complementing the existing tools particularly when study- or datatype-specific references are unreliable or unavailable.

AVAILABILITY AND IMPLEMENTATION: The open-source R Scripts of CAM3.0 is freely available at https://github.com/ChiungTingWu/CAM3/(https://github.com/Bioconductor/Contributions/issues/3205). A user's guide and a vignette are provided.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app