Add like
Add dislike
Add to saved papers

The regulation of high-energy insensitive compound 2,6-diamino-3,5-dinitropyrazine-1-oxide by external electric field.

CONTEXT: The influence of external electric fields (EEFs) on chemical substances has always been a hot topic in the field of theoretical chemistry research. 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105) is an energetic material with excellent comprehensive properties and enormous potential for application. This article explores the molecular structure, electronic structure, energy change, frontier molecular orbitals (FMOs) and density of states (DOS), UV-Vis spectra, and infrared spectra of LLM-105 under various electric field conditions. The results indicate that negative EEF can improve the stability of LLM-105, reflected in the initiation of changes in bond length and HOMO-LOMO gap. EEF has a significant impact on the electronic structure of LLM-105. The polarization of the electronic structure brings about a change in total energy, which is reflected in the analysis of energy changes. In addition, the external electric field will cause the frequency of the infrared spectra and the UV-Vis spectra to have different degrees of blue shift. The results of the analysis are helpful to understand the changes of energetic materials under the applied electric field.

METHODS: Based on the density functional theory (DFT), the structural optimization and energy calculation were carried out by using B3LYP/6-311G(d, p) and B3LYP/def2-TZVPP methods, respectively. After optimization convergence, vibration analysis was performed without imaginary frequencies to obtain stable configurations. Then, the molecular structure, electronic structure, energy changes, molecular orbital and density of states, UV-Vis spectra, and infrared spectra were analyzed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app