Add like
Add dislike
Add to saved papers

Anti-tumor immunotherapy using engineered bacterial outer membrane vesicles fused to lysosome-targeting chimeras mediated by transferrin receptor.

Cell Chemical Biology 2024 January 31
The lysosome-targeting chimera (LYTAC) approach has shown promise for the targeted degradation of secreted and membrane proteins via lysosomes. However, there have been challenges in design, development, and targeting. Here, we have designed a genetically engineered transferrin receptor (TfR)-mediated lysosome-targeting chimera (TfR-LYTAC) that is efficiently internalized via TfR-mediate endocytosis and targets PD-L1 for lysosomal degradation in cultured cells but not in vivo due to short half-life and poor tumor targeting. A delivery platform was developed by fusing TfR-LYTAC to the surface of bacterial outer membrane vesicles (OMVs). The engineered OMV-LYTAC combines PD-1/PD-L1 pathway inhibition with LYTAC and immune activation by bacterial OMVs. OMV-LYTAC significantly reduced tumor growth in vivo. We have provided a modular and simple genetic strategy for lysosomal degradation as well as a delivery platform for in vivo tumor targeting. The study paves the way for the targeting and degradation of extracellular proteins using the TfR-LYTAC system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app