Add like
Add dislike
Add to saved papers

Cerium-Doped CuFe-Layered Catalyst for the Enhanced Oxidation of o -Xylene and N , N -Dimethylacetamide: Insights into the Effects of Temperature and Space Velocity.

ACS Omega 2023 December 6
Volatile organic compounds (VOCs) are among the most potential pollutant groups that cause air quality degradation because of their toxic effects on human health. Although catalytic oxidation is an effective method for VOC removal, further studies are required to develop more efficient and affordable catalysts. In this study, cerium (Ce) was doped into a CuFe-layered material (Ce-CuFe) to improve the catalytic oxidation efficiencies of N , N -dimethylacetamide (DMAC) and o -xylene. The synthesized catalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. XRD analysis confirmed the successful doping of Ce atoms into the CuFe-layered structure, while in the SEM and TEM images the catalyst appeared as uniformly distributed two-dimensional plate-like particles. The catalytic oxidation performance of the Ce-CuFe was investigated at six temperatures between 200 and 450 °C and three space velocities in the range of 31000-155000 mLh-1 g-1 for the oxidation of DMAC and o -xylene, which functioned as polar and nonpolar solvents, respectively. At 200 °C, the Ce-CuFe catalyst performed 50% greater when oxidizing o -xylene while exhibiting a DMAC oxidation efficiency that was 42% greater than that achieved using undoped CuFe. The Ce-CuFe could remove DMAC and o -xylene with an efficiency higher than 95% at 450 °C. Furthermore, Ce-doped CuFe exhibited high resistance against moisture and outstanding reusability performance with only a 5.6% efficiency loss after nine reuse cycles. Overall, the incorporation of Ce into a CuFe-layered material is a promising strategy for the oxidation of various VOCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app