Add like
Add dislike
Add to saved papers

Computed tomography measured epicardial adipose tissue and psoas muscle attenuation: new biomarkers to predict major adverse cardiac events (MACE) and mortality in patients with heart disease and critically ill patients. Part I: Epicardial adipose tissue.

Over the last two decades, the potential role of epicardial adipocyte tissue (EAT) as a marker for major adverse cardiovascular events has been extensively studied. Unlike other visceral adipocyte tissues (VAT), EAT is not separated from the adjacent myocardium by a fascial layer and shares the same microcirculation with the myocardium. Adipocytokines, secreted by EAT, interact directly with the myocardium through paracrine and vasocrine pathways. The role of the Randle cycle, linking VAT accumulation to insulin resistance, and the relevance of blood flow and mitochondrial function of VAT, are briefly discussed. The three available imaging modalities for the assessment of EAT are discussed. The advantages of echocardiography, cardiac CT, and cardiac magnetic resonance (CMR) are compared. The last section summarises the current stage of knowledge on EAT as a clinical marker for major adverse cardiovascular events (MACE). The association between EAT volume and coronary artery disease (CAD) has robustly been validated. There is growing evidence that EAT volume is associated with computed tomography coronary angiography (CTCA) assessed high-risk plaque features. The EAT CT attenuation coefficient predicts coronary events. Many studies have established EAT volume as a predictor of atrial fibrillation after cardiac surgery. Moreover, EAT thickness has been independently associated with severe aortic stenosis and mitral annular calcification. Studies have demonstrated that EAT volume is associated with heart failure. Finally, we discuss the potential role of EAT in critically ill patients admitted to the intensive care unit. In conclusion, EAT seems to be a promising new biomarker to predict MACE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app