Add like
Add dislike
Add to saved papers

Time to First Culture Positivity for Gram-Negative Rods Resistant to Ceftriaxone in Critically Ill Adults.

BACKGROUND: The optimal timing for the de-escalation of broad-spectrum antibiotics with activity against Pseudomonas aeruginosa and resistant Gram-negative rods (GNRs) in critically ill adults remains unknown.

RESEARCH QUESTION: We tested the hypothesis that cultures will identify GNRs that ultimately demonstrate resistance to ceftriaxone within 48 hours, potentially allowing safe de-escalation at this time point.

STUDY DESIGN AND METHODS: We conducted a secondary analysis of data from the Isotonic Solutions and Major Adverse Renal Events Trial: a pragmatic, cluster-randomized, multiple-crossover trial comparing balanced crystalloids versus saline for intravenous fluid administration in 15,802 critically ill adults at 5 intensive care units (ICUs) at Vanderbilt University Medical Center in Nashville, TN, USA. The primary endpoint was the time-to-positivity of respiratory and blood cultures that ultimately demonstrated growth of GNRs resistant to ceftriaxone. Multivariable logistic regression modeling was used to examine risk factors for the growth of cultures after 48 hours.

RESULTS: A total of 524 respiratory cultures had growth of GNRs, of which 284 (54.2%) had resistance to ceftriaxone. A total of 376 blood cultures grew GNRs, of which 70 (18.6%) had resistance to ceftriaxone. At 48 hours, 87% of respiratory cultures and 85% of blood cultures that ultimately grew GNRs resistant to ceftriaxone had demonstrated growth. Age, gender, predicted risk of inpatient mortality and prior use of antibiotics did not predict the growth of cultures after 48 hours.

INTERPRETATION: Among a cohort of critically ill adults, 13% of respiratory cultures and 15% of blood cultures that ultimately grew GNRs resistant to ceftriaxone did not demonstrate growth until at least 48 hours after collection. Further work is needed to determine the ideal time for critically ill adults to de-escalate from broad-spectrum antibiotics targeting Pseudomonas aeruginosa and extended-spectrum β-lactamase-producing gram-negative pathogens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app