Add like
Add dislike
Add to saved papers

Drug Screening in Human PSC-Cardiac Organoids Identifies Pro-proliferative Compounds Acting via the Mevalonate Pathway.

Cell Stem Cell 2019 June 7
We have previously developed a high-throughput bioengineered human cardiac organoid (hCO) platform, which provides functional contractile tissue with biological properties similar to native heart tissue, including mature, cell-cycle-arrested cardiomyocytes. In this study, we perform functional screening of 105 small molecules with pro-regenerative potential. Our findings reveal surprising discordance between our hCO system and traditional 2D assays. In addition, functional analyses uncovered detrimental effects of many hit compounds. Two pro-proliferative small molecules without detrimental impacts on cardiac function were identified. High-throughput proteomics in hCO revealed synergistic activation of the mevalonate pathway and a cell-cycle network by the pro-proliferative compounds. Cell-cycle reentry in hCO and in vivo required the mevalonate pathway as inhibition of the mevalonate pathway with a statin attenuated pro-proliferative effects. This study highlights the utility of human cardiac organoids for pro-regenerative drug development, including identification of underlying biological mechanisms and minimization of adverse side effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app