Add like
Add dislike
Add to saved papers

Remote tissue conditioning is neuroprotective against MPTP insult in mice.

IBRO Reports 2018 June
Current treatments for Parkinson's disease (PD) are primarily symptomatic, leaving a need for treatments that mitigate disease progression. One emerging neuroprotective strategy is remote tissue conditioning, in which mild stress in a peripheral tissue (e.g. a limb) induces protection of life-critical organs such as the brain. We evaluated the potential of two remote tissue conditioning interventions - mild ischemia and photobiomodulation - in protecting the brain against the parkinsonian neurotoxin MPTP. Further, we sought to determine whether combining these two interventions provided any added benefit. Male C57BL/6 mice (n = 10/group) were pre-conditioned with either ischemia of the leg (4 × 5 min cycles of ischemia/reperfusion), or irradiation of the dorsum with 670 nm light (50 mW/cm2 , 3 min), or both interventions, immediately prior to receiving two MPTP injections 24 hours apart (50 mg/kg total). Mice were sacrificed 6 days later and brains processed for tyrosine hydroxylase immunohistochemistry. Stereological counts of functional dopaminergic neurons in the substantia nigra pars compacta revealed that both remote ischemia and remote photobiomodulation rescued around half of the neurons that were compromised by MPTP ( p  < 0.001). Combining the two interventions provided no added benefit, rescuing only 40% of vulnerable neurons ( p  < 0.01). The present results suggest that remote tissue conditioning, whether ischemia of a limb or photobiomodulation of the torso, induces protection of brain centers critical in PD. The lack of additional benefit when combining these two interventions suggests they may share common mechanistic pathways. Further research is needed to identify these pathways and determine the conditioning doses that yield optimal neuroprotection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app