Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Glutathione-S-transferase, superoxide dismutase, xanthine oxidase, catalase, glutathione peroxidase and lipid peroxidation in the liver of exercised rats.

Glutathione-S-transferase (GST), superoxide dismutase (SOD), Xanthine oxidase, selenium-dependent glutathione peroxidase (GPxI), catalase activities and malondialdehyde (MDA) content were determined in liver of three groups of exercised rats (E) viz., one day (E1), 10 days (E10) and 60 days (E60). GST, SOD and xanthine oxidase activities increased significantly with the increase in exercise period. Lipid peroxidation, expressed in terms of MDA formation, also increased in the liver of all the three groups. But catalase activity decreased significantly during exercise. Further, GPxI did not show any significant change in its activity in response to exercise. Our findings indicate that: 1) The significant increase in GST activity suggests their induction aimed at counteracting the oxidant stress induced during exercise; 2) The significant increase in xanthine oxidase and SOD activities indicates the generation of more superoxide anion radicals and their removal, respectively. 3) The significant reduction in catalase activity denotes the decreased formation of hydrogenperoxides during exercise; and 4) The pattern of changes in the activity level of GPxI indicate its least participation during exercise. However, in another way it is giving a scope for the involvement of GPxII associated with GST in the reduction of organic hydroperoxides. Further more, the relative increase in MDA is considered as the indicator of the rate of lipid peroxidation in the wake of exhaustive exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app