Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Target-specific delivery of doxorubicin to retinoblastoma using epithelial cell adhesion molecule aptamer.

PURPOSE: To study target-specific delivery of doxorubicin (Dox) using an RNA aptamer against epithelial cell adhesion molecule (EpCAM) in retinoblastoma (RB) cells.

METHODS: The binding affinity of the EpCAM aptamer to RB primary tumor cells, Y79 and WERI-Rb1 cells, and Müller glial cell lines were evaluated with flow cytometry. Formation of physical conjugates of aptamer and Dox was monitored with spectrofluorimetry. Cellular uptake of aptamer-Dox conjugates was monitored through fluorescent microscopy. Drug efficacy was monitored with cell proliferation assay.

RESULTS: The EpCAM aptamer (EpDT3) but not the scrambled aptamer (Scr-EpDT3) bound to RB tumor cells, the Y79 and WERI-Rb1 cells. However, the EpCAM aptamer and the scrambled aptamer did not bind to the noncancerous Müller glial cells. The chimeric EpCAM aptamer Dox conjugate (EpDT3-Dox) and the scrambled aptamer Dox conjugate (Scr-EpDT3-Dox) were synthesized and tested on the Y79, WERI-Rb1, and Müller glial cells. The targeted uptake of the EpDT3-Dox aptamer caused cytotoxicity in the Y79 and WERI-Rb1 cells but not in the Müller glial cells. There was no significant binding or consequent cytotoxicity by the Scr-EpDT3-Dox in either cell line. The EpCAM aptamer alone did not cause cytotoxicity in either cell line.

CONCLUSIONS: The results show that the EpCAM aptamer-Dox conjugate can selectively deliver the drug to the RB cells there by inhibiting cellular proliferation and not to the noncancerous Müller glial cells. As EpCAM is a cancer stem cell marker, this aptamer-based targeted drug delivery will prevent the undesired effects of non-specific drug activity and will kill cancer stem cells precisely in RB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app