Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of combined administration of DPD-inhibitory oral fluoropyrimidine, S-1, plus paclitaxel on gene expressions of fluoropyrimidine metabolism-related enzymes in human gastric xenografts.

BACKGROUND: S-1 is the most effective oral fluoropyrimidine derivative widely used for patients with gastric carcinoma in Japan. Although S-1 plus taxane has been a promising candidate as an effective chemotherapeutic regimen, the mechanisms of its additive or synergistic anticancer effects and changes in gene expression after the administration of these agents have not yet been fully elucidated.

METHODS: Experimental chemotherapy was performed using human gastric carcinoma xenografts, MKN-45 and TMK-1, to examine anticancer effects and gene expressions of fluoropyrimidine metabolism-related enzymes including thymidine phosphorylase (TP), thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyltransferase (OPRT), and uridine phosphorylase (UP). Nude mice were treated with S-1, paclitaxel, and their combination. After treatment, in vivo antitumor effects of S-1, paclitaxel alone, and their combination and the effects on gene expressions of enzymes involved in 5-fluorouracil metabolism were examined using the RT-PCR method.

RESULTS: The combined use of S-1 and paclitaxel showed additive to synergistic antitumor effects on both gastric cancer xenografts. While consistent upregulation of dThPase and DPD gene expression was exhibited after administration of S-1, no further increase of dThPase gene expression after combined use of S-1 with paclitaxel was observed. There was no increase in TS gene expression after the administration of either S-1 alone or paclitaxel alone.

CONCLUSION: These results provide some insight into the mechanism and/or rationale underlying the additive to synergistic effect of combined administration of S-1 and paclitaxel in gastric carcinoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app