Add like
Add dislike
Add to saved papers

Femtosecond time-resolved spectroscopy of elementary molecular dynamics.

Femtosecond time-resolved coherent anti-Stokes Raman spectroscopy (CARS) is applied in order to prepare and monitor laser-induced vibrational coherences (wave packets) of different samples mainly in its electronic ground state but also in excited states. The time evolution of these wave packets gives information on the dynamics of molecular vibrations. In a first example the femtosecond (fs) CARS transients of iodine are investigated. By changing the relative delay between the applied laser pulses of this non-degenerated four-wave mixing technique, both the wavepacket motion on the electronically excited and the ground states can be detected as oscillations in the coherent anti-Stokes signal. Second we report on selective excitation of the vibrational modes in the electronic ground state of polymers of diacetylene by means of a femtosecond time-resolved CARS scheme. This selectivity is achieved by varying the phase shape (chirp) and the relative delay between the exciting laser pulses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app