Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Analysis of sequence upstream of the endogenous H19 gene reveals elements both essential and dispensable for imprinting.

Imprinting of the linked and oppositely expressed mouse H19 and Igf2 genes requires a 2-kb differentially methylated domain (DMD) that is located 2 kb upstream of H19. This element is postulated to function as a methylation-sensitive insulator. Here we test whether an additional sequence 5' of H19 is required for H19 and Igf2 imprinting. Because repetitive elements have been suggested to be important for genomic imprinting, the requirement of a G-rich repetitive element that is located immediately 3' to the DMD was first tested in two targeted deletions: a 2.9-kb deletion (Delta D MD Delta G) that removes the DMD and G-rich repeat and a 1.3-kb deletion (Delta G) removing only the latter. There are also four 21-bp GC-rich repetitive elements within the DMD that bind the insulator-associated CTCF (CCCTC-binding factor) protein and are implicated in mediating methylation-sensitive insulator activity. As three of the four repeats of the 2-kb DMD were deleted in the initial 1.6-kb Delta DMD allele, we analyzed a 3.8-kb targeted allele (Delta 3.8kb-5'H19), which deletes the entire DMD, to test the function of the fourth repeat. Comparative analysis of the 5' deletion alleles reveals that (i) the G-rich repeat element is dispensable for imprinting, (ii) the Delta DMD and Delta DMD Delta G alleles exhibit slightly more methylation upon paternal transmission, (iii) removal of the 5' CTCF site does not further perturb H19 and Igf2 imprinting, suggesting that one CTCF-binding site is insufficient to generate insulator activity in vivo, (iv) the DMD sequence is required for full activation of H19 and Igf2, and (v) deletion of the DMD disrupts H19 and Igf2 expression in a tissue-specific manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app