Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Spastic paretic stiff-legged gait: joint kinetics.

OBJECTIVE: The authors previously suggested that spastic paretic stiff-legged gait, defined as reduced knee flexion in swing associated with upper-motor neuron injury, can be attributed to multiple impairments besides spastic quadriceps activity. This study hypothesizes that subjects with spastic paretic stiff-legged gait have altered kinetics not only about the knee but also about the hip and ankle.

DESIGN: Joint kinetic data of 20 subjects with spastic paretic stiff-legged gait caused by stroke were compared with data obtained from 20 able-bodied subjects.

RESULTS: Significant reductions in the subject group were found in both peak knee-joint power absorption (0.42+/-0.34 vs. 0.99+/-0.27 W/(kg x m x m/sec)) and peak ankle-joint power generation (0.74+/-0.42 vs. 1.51+/-0.17 W/(kg x m x m/sec); both P < 0.0001). The authors observed increases in peak external-hip flexion torque in stance, hip-power generation in loading response, knee-extension torque in midstance, ankle-dorsiflexion torque, and ankle-power absorption in stance. There was substantial variability in most torque and power values among subjects, which was significantly greater than that observed in the control subjects.

CONCLUSIONS: These findings, in conjunction with previous studies, support the likelihood of multiple mechanisms for reduced knee flexion in swing. Alternatively, some of the joint kinetic differences could be compensations for or associated with reduced knee flexion in swing. The substantial variability among subjects implies that despite a similar visual appearance of reduced knee flexion among subjects with a spastic paretic stiff-legged gait pattern, each individual has unique mechanisms associated with this observed gait pattern.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app