RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal.

Menkes disease is an X-linked recessive copper deficiency disorder caused by mutations in the ATP7A ( MNK ) gene which encodes a copper transporting P-type ATPase (MNK). MNK is normally localized pre- dominantly in the trans -Golgi network (TGN); however, when cells are exposed to excessive copper it is rapidly relocalized to the plasma membrane where it functions in copper efflux. In this study, the c-myc epitope was introduced within the loop connecting the first and second transmembrane regions of MNK. This myc epitope allowed detection of the protein at the surface of living cells and provided the first experimental evidence supporting the common topological model. In cells stably expressing the tagged MNK protein (MNK-tag), extracellular antibodies were internalized to the perinuclear region, indicating that MNK-tag at the TGN constitutively cycles via the plasma membrane in basal copper conditions. Under elevated copper conditions, MNK-tag was recruited to the plasma membrane; however, internalization of MNK-tag was not inhibited and the protein continued to recycle through cyto- plasmic membrane compartments. These findings suggest that copper stimulates exocytic movement of MNK to the plasma membrane rather than reducing MNK retrieval and indicate that MNK may remove copper from the cytoplasm by transporting copper into the vesicles through which it cycles. Newly internalized MNK-tag and transferrin were found to co-localize, suggesting that MNK-tag follows a clathrin-coated pit/endosomal pathway into cells. Mutation of the di-leucine, L1487 L1488, prevented uptake of anti-myc antibodies in both basal and elevated copper conditions, thereby identifying this sequence as an endocytic signal for MNK. Analysis of the effects of the di-leucine mutation in elevated copper provided further support for copper-stimulated exocytic movement of MNK from the TGN to the plasma membrane.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app