Functional characterization of the carnitine transporter defective in primary carnitine deficiency.
Archives of Biochemistry and Biophysics 1999 April 2
Primary carnitine deficiency is an autosomal recessive disorder caused by defective carnitine transport which impairs fatty acid oxidation and manifests as nonketotic hypoglycemia or skeletal or heart myopathy. Here we report the functional characterization of this transporter in human fibroblasts. Carnitine enters normal cells by saturable and unsaturable routes, the latter corresponding to Na+-independent uptake. Saturable carnitine transport was absent in cells from patients with primary carnitine deficiency. In control cells, saturable carnitine transport was energized by the electrochemical gradient of Na+. Carnitine uptake was not inhibited by amino acid substrates of transport systems A, ASC, and X-AG, but was inhibited competitively (in potency order) by butyrobetaine > carnitine > palmitoylcarnitine = acetylcarnitine > betaine. Carnitine uptake was also noncompetitively inhibited by verapamil and quinidine, inhibitors of the multidrug resistance family of membrane transporters, suggesting that the carnitine transporter may share a functional motif with this class of transporters. A high-affinity carnitine transporter was present in kidney 293 cells, but not in HepG2 liver cells, whose carnitine transporter had a Km in the millimolar range. These result indicate the presence of multiple types of carnitine transporters in human cells.
Full text links
Trending Papers
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app