Add like
Add dislike
Add to saved papers

Activity and Diversity of Microorganisms in Root Zone of Plant Species Spontaneously Inhabiting Smelter Waste Piles.

The aim was to assess plant driven changes in the activity and diversity of microorganisms in the top layer of the zinc and lead smelter waste piles. The study sites comprised two types (flotation waste-FW and slag waste-SW) of smelter waste deposits in Piekary Slaskie, Poland. Cadmium, zinc, lead, and arsenic contents in these technosols were extremely high. The root zone of 8 spontaneous plant species (FW- Thymus serpyllum , Silene vulgaris , Solidago virgaurea , Echium vulgare , and Rumex acetosa ; and SW- Verbascum thapsus ; Solidago gigantea , Eupatorium cannabinum ) and barren areas of each waste deposit were sampled. We observed a significant difference in microbial characteristics attributed to different plant species. The enzymatic activity was mostly driven by plant-microbial interactions and it was significantly greater in soil affected by plants than in bulk soil. Furthermore, as it was revealed by BIOLOG Ecoplate analysis, microorganisms inhabiting barren areas of the waste piles rely on significantly different sources of carbon than those found in the zone affected by spontaneous plants. Among phyla, Actinobacteriota were the most abundant, contributing to at least 25% of the total abundance. Bacteria belonging to Blastococcus genera were the most abundant with the substantial contribution of Nocardioides and Pseudonocardia , especially in the root zone. The contribution of unclassified bacteria was high-up to 38% of the total abundance. This demonstrates the unique character of bacterial communities in the smelter waste.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app