Add like
Add dislike
Add to saved papers

Cutting Edge: BCAP Promotes Lupus-like Disease and TLR-Mediated Type I IFN Induction in Plasmacytoid Dendritic Cells.

Systemic lupus erythematosus severity correlates with elevated serum levels of type I IFNs, cytokines produced in large quantities by plasmacytoid dendritic cells (pDC) in response to engagement of TLR7 and TLR9 with endocytosed nucleic acids. B cell adaptor for PI3K (BCAP) promoted many aspects of TLR7-driven lupus-like disease, including Isg15 and Ifit1 expression in blood and an immature pDC phenotype associated with higher IFN production. BCAP-/- mice produced significantly less serum IFN-α than wild-type mice after injection of TLR9 agonist, and BCAP promoted TLR7 and TLR9-induced IFN-α production specifically in pDC. TLR-induced IFN-α production in pDC requires DOCK2-mediated activation of Rac1 leading to activation of IKKα, a mechanism we show was dependent on BCAP. BCAP-/- pDC had decreased actin polymerization and Rac1 activation and reduced IKKα phosphorylation upon TLR9 stimulation. We show a novel role for BCAP in promoting TLR-induced IFN-α production in pDC and in systemic lupus erythematosus pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app