Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Isolation and characterization of thermophilic bacteria capable of degrading dehydroabietic acid.

Using a semi-continuous enrichment method, we isolated two thermophilic bacterial strains, which could completely degrade abietane resin acids, including dehydroabietic acid (DhA). Strain DhA-73, isolated from a laboratory-scale bioreactor treating bleached kraft mill effluent at 55 degrees C, grew on DhA as sole carbon source; while DhA-71, isolated from municipal compost, required dilute tryptic soy broth for growth on DhA. DhA-71 grew on DhA from 30 degrees C to 60 degrees C with maximum growth at 50 degrees C; while, DhA-73 grew on DhA from 37 degrees C to 60 degrees C with maximum growth at 55 degrees C. At 55 degrees C, the doubling times for DhA-71 and DhA-73 were 3.3 and 3.7 h, respectively. DhA-71 and DhA-73 had growth yields of 0.26 and 0.19 g of protein per g of DhA, respectively. During growth on DhA, both strains converted DhA to CO2, biomass, and dissolved organic carbon. Analyses of the 16S-rDNA sequences of these two strains suggest that they belong to two new genera in the Rubrivivax subgroup of the beta subclass of the Proteobacteria. Strains DhA-71 and DhA-73 are the first two bacteria isolated and characterized that are capable of biodegradation of resin acids at high temperatures. This study provided direct evidence for biodegradation of resin acids and feasibility for biotreatment of pulp mill effluent at elevated temperatures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app